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Lianzhen Liu

School of Science, Jiangnan University, China

Constantine Tsinakis∗

Department of Mathematics, Vanderbilt University, U.S.A.

Abstract

A number of research articles have established the significant role of lattice-
ordered groups (`-groups) in logic. The fact that underpins these studies is
the realization that important algebras of logic may be viewed as `-groups
with a modal operator. These connections are just the tip of the iceberg. The
purpose of the present article is to lay the groundwork for, and provide sig-
nificant initial contributions to, the development of a Conrad type approach
to the study of algebras of logic. The term Conrad Program refers to Paul
Conrad’s approach to the study of `-groups, which analyzes the structure of
individual or classes of `-groups by primarily using strictly lattice theoretic
properties of their lattices of convex `-subgroups. The present article demon-
strates that large parts of the Conrad Program can be profitably extended
in the setting of e-cyclic residuated lattices – that is residuated lattices that
satisfy the identity x\e ≈ e/x. An indirect benefit of this work is the intro-
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duction of new tools and techniques in the study of algebras of logic, and the
enhanced role of the lattice of convex subalgebras of a residuated lattice.
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1. Introduction

There have been a number of studies providing compelling evidence of the
importance of lattice-ordered groups (`-groups) in the study of algebras of
logic1. For example, a fundamental result [33] in the theory of MV-algebras
is the categorical equivalence between the category of MV-algebras and the
category of unital Abelian `-groups. Likewise, the non-commutative general-
ization of this result in [13] establishes a categorical equivalence between the
category of pseudo-MV-algebras and the category of unital `-groups. Fur-
ther, the generalization of these two results in [29] shows that one can view
GMV-algebras as `-groups with a suitable modal operator. Likewise, the
work in [29] offers a new paradigm for the study of various classes of can-
cellative residuated lattices by viewing these structures as `-groups with a
suitable modal operator (a conucleus).

The preceding connections are just the tip of the iceberg. Here we lay
the groundwork for, and provide some significant initial contributions to,
developing a Conrad type approach to the study of algebras of logic. The
term Conrad Program traditionally refers to Paul Conrad’s approach to the
study of `-groups, which analyzes the structure of individual `-groups, or
classes of `-groups, by primarily using strictly lattice theoretic properties
of their lattices of convex `-subgroups. Conrad’s papers [6–9] in the 1960s
pioneered this approach and amply demonstrated its usefulness. A survey of
the most important consequences of this approach to `-groups can be found

1We use the term algebra of logic to refer to residuated lattices – algebraic counterparts
of propositional substructural logics – and their reducts. Substructural logics are non-
classical logics that are weaker than classical logic, in the sense that they may lack one or
more of the structural rules of contraction, weakening and exchange in their Genzen-style
axiomatization. These logics encompass a large number of non-classical logics related to
computer science (linear logic), linguistics (Lambek Calculus), philosophy (relevant logics),
and many-valued reasoning.
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in [1], while complete proofs for most of the surveyed results can be found in
Conrad’s “Blue Notes” [10], as well as in [2] and [11].

The present article and its forthcoming successors will demonstrate that
large parts of the Conrad Program can be profitably extended in the set-
ting of e-cyclic residuated lattices – that is residuated lattices that satisfy
the identity x\e ≈ e/x. This variety encompasses most varieties of no-
table significance in algebraic logic, including `-groups and, more generally,
all cancellative varieties of residuated lattices, MV-algebras, pseudo-MV-
algebras, GMV-algebras, semilinear GBL-algebras, BL-algebras, Heyting al-
gebras, commutative residuated lattices, and integral residuated lattices. A
byproduct of this work is the addition of new tools and techniques for study-
ing algebras of logic.

Let us now be more specific about the structure and results of this pa-
per. In Section 2, we recall some necessary background from the theory of
residuated lattices. In Section 3, we study in detail the lattice C(L) of con-
vex subalgebras of an e-cyclic residuated lattice L. The main result of this
section is Theorem 3.8 which asserts that C(L) is an algebraic distributive
lattice whose compact elements – the principal convex subalgebras – form
a sublattice. Further, Lemma 3.2 of the same section provides an element-
wise description of the convex subalgebra generated by an arbitrary subset
of L. The development of the material of this section is a natural extension
of the techniques used to study the lattice of normal convex subalgebras, as
developed in [5].

In Section 4, we consider the role of prime convex subalgebras (meet-
irreducible elements) and polars (pseudocomplements) in C(L). For example,
it is shown (Lemma 4.2) that if the e-cyclic residuated lattice L satisfies the
left or right prelinearity law, then a convex subalgebra H of L is prime iff
the set of all convex subalgebras exceeding H is a chain under set-inclusion.
Hence, see also Proposition 4.5, the lattice K(C(L)) of principal convex sub-
algebras of L is a relatively normal lattice. Further, a description of minimal
prime convex subalgebras in terms of polars is provided by Proposition 4.10.

Section 5 is concerned with semilinearity, and more precisely with the
question of whether this property can be “captured” in the lattice of convex
subalgebras. We prove in Theorem 5.6 that a variety V of e-cyclic residuated
lattices that satisfy either of the prelinearity laws is semilinear iff for every
L ∈ V , all (principal) polars in L are normal. Equivalently, all minimal
prime convex subalgebras of L are normal. Further, Theorem 5.9 presents a
characterization of the variety SemRL of semilinear residuated lattices that

3



does not involve multiplication.
In Section 6, we study Hamiltonian residuated lattices, that is, residuated

lattices in which convex subalgebras are normal. Theorem 6.2 characterizes
Hamiltonian varieties of e-cyclic residuated lattices; more precisely, a class
closed with respect to direct products is Hamiltonian iff it satisfies certain
identities. While it is known that there exists a largest Hamiltonian variety
of `-groups, viz., the variety of weakly Abelian `-groups, Theorem 6.3 estab-
lishes that this is not the case for Hamiltonian varieties of e-cyclic residuated
lattices.

In Section 7 we ask whether the lattice of convex subalgebras of a resid-
uated lattice that satisfies either prelinearity law is isomorphic to the lattice
of convex `-subgroups of an `-group. The main result of the section pro-
vides an affirmative answer to the question when the residuated lattice is a
GMV-algebra.

Section 8 offers a few suggestions for future developments in the subject.

2. Basic notions

In this section we briefly recall basic facts about the varieties of residuated
lattices, referring to [5], [19], [14], and [28] for further details. These varieties
provide algebraic semantics for substructural logics, and encompass other
important classes of algebras such as `-groups.

A residuated lattice is an algebra L = (L, ·, \, /,∨,∧, e) satisfying:

(a) (L, ·, e) is a monoid;

(b) (L,∨,∧) is a lattice with order ≤; and

(c) \ and / are binary operations satisfying the residuation property:

x · y ≤ z iff y ≤ x\z iff x ≤ z/y.

We refer to the operations \ and / as the left residual and right residual of ·,
respectively. As usual, we write xy for x · y and adopt the convention that,
in the absence of parenthesis, · is performed first, followed by \ and /, and
finally by ∨ and ∧.

Throughout this paper, the class of residuated lattices will be denoted by
RL. It is easy to see that the equivalences that define residuation can be
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expressed in terms of finitely many equations and thus RL is a finitely based
variety (see [5], [3]).

The existence of residuals has the following basic consequences, which
will be used in the remainder of the paper without explicit reference.

Lemma 2.1. Let L be a residuated lattice.

(1) The multiplication preserves all existing joins in each argument; i.e., if∨
X and

∨
Y exist for X, Y ⊆ L, then

∨
x∈X,y∈Y (xy) exists and(∨

X
)(∨

Y
)

=
∨

x∈X,y∈Y

(xy).

(2) The residuals preserve all existing meets in the numerator, and convert
existing joins to meets in the denominator, i.e., if

∨
X and

∧
Y exist

for X, Y ⊆ L, then for any z ∈ L,
∧
x∈X(x\z) and

∧
y∈Y (z\y) exist

and (∨
X
)∖

z =
∧
x∈X

(x\z) and z
∖(∧

Y
)

=
∧
y∈Y

(z\y),

and the same for /.

(3) The following identities (and their mirror images)2 hold in L:

(a) (x\y)z ≤ x\yz;

(b) x\y ≤ zx\zy;

(c) (x\y)(y\z) ≤ x\z;

(d) xy\z = y\(x\z);

(e) x\(y/z) = (x\y)/z;

(f) x(x\x) = x;

(g) (x\x)2 = x\x.

We will have the occasion to consider pointed residuated lattices. A
pointed residuated lattice is an algebra L = (L, ·, \, /,∨,∧, e, f) of signature

2(a), (b) and (c) are expressed as inequalities, but are clearly equivalent to identities.
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〈2, 2, 2, 2, 2, 0, 0〉 such that (L, ·, \, /,∨,∧, e) is a residuated lattice. In other
words, a pointed residuated lattice is simply a residuated lattice with an extra
constant f . Residuated lattices may be identified with pointed residuated
lattices satisfying the identity e ≈ f . The variety PRL of pointed residuated
lattices provides algebraic semantics for the Full Lambek calculus (pointed
residuated lattices are therefore often referred to also as FL-algebras) and its
subvarieties correspond to substructural logics. We also define here a bounded
residuated lattice to be a pointed residuated lattice with bottom element f
(and therefore also, top element f\f), emphasizing that “bounded” implies
that the constant f representing the bottom element is in the signature.
A (pointed) residuated lattice is said to be integral if e is its top element.
Note, however, that in a bounded residuated lattice, e may not be the top
element, and, conversely, an integral pointed residuated lattice may not be
bounded. A (pointed) residuated lattice is commutative if it satisfies the
equation xy ≈ yx, in which case, x\y and y/x coincide and are denoted by
x→ y. We call a (pointed) residuated lattice e-cyclic if it satisfies the identity
e/x ≈ x\e. In this paper we mostly consider e-cyclic (pointed) residuated
lattices. As was noted in the introduction, this variety encompasses most
varieties of notable significance, including `-groups, GBL-algebras and GMV-
algebras. The latter two classes will be discussed in some detail in Section
7. While it is highly unlikely that an intrinsic description of free objects
in this variety is within reach, it is expected – in analogy with the variety
of residuated lattices – that there exists a Gentzen-style cut-free sequent
calculus associated with it.

The variety of `-groups occupies a very special place among varieties of
residuated lattices. Recall that an element a ∈ L is said to be invertible
if (e/a)a = e = a(a\e). This is of course true if and only if a has a (two-
sided) inverse a−1, in which case e/a = a−1 = a\e. The structures in which
every element is invertible are precisely the `-groups. It should be noted
that an `-group is traditionally defined in the literature as an algebra G =
(G,∨,∧, ·, −1, e) such that (G,∨,∧) is a lattice, (G, ·, −1, e) is a group, and
multiplication is order preserving – or, equivalently, it distributes over the
lattice operations (see [2], [16]). The variety of `-groups is term equivalent to
the subvariety of RL defined by the equations (e/x)x ≈ e ≈ x(x\e); the term
equivalence is given by x−1 = e\x and x/y = xy−1, x\y = x−1y. We denote
by LG the aforementioned subvariety and refer to its members as `-groups.

Let L be a residuated lattice. If F ⊆ L, we write F− for the set of
“negative” elements of F ; i.e., F− = {x ∈ F : x ≤ e}. The negative cone
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of L is the algebra L− with domain L−, with monoid and lattice operations
the restrictions to L− of the corresponding operations in L, and with the
residuals \

−
and /

−
defined by

x\
−
y = (x\y) ∧ e and y/

−
x = (y/x) ∧ e,

where \ and / denote the residuals in L.

3. Convex subalgebras

In many respects, convex `-subgroups play a more important role than
`-ideals (normal convex `-subgroups) in the study of `-groups, for the lat-
tice of convex `-subgroups of a given `-group bears significant information
about the `-group. Some investigations similar to the aforementioned “Con-
rad program” have been carried out for prefilters (or filters) of certain inte-
gral residuated lattices and for convex subalgebras of GBL-algebras – more
precisely, for ideals of DR`-monoids. In the context of e-cyclic residuated lat-
tices, convex subalgebras are a natural generalization of convex `-subgroups
of `-groups as well as prefilters (filters) of integral residuated lattices. Hence
we will focus on convex subalgebras of e-cyclic residuated lattices and on the
study of e-cyclic residuated lattices via their lattices of convex subalgebras.

In this section, we describe some basic properties of convex subalgebras of
e-cyclic residuated lattices and we show that the lattice of convex subalgebras
of L is an algebraic distributive lattice which is isomorphic to a sublattice of
the congruence lattice of the lattice reduct of L.

A subset C of a poset P = (P,≤) is order-convex (or simply convex ) in
P if, whenever a, b ∈ C, x ∈ P and a ≤ x ≤ b, then x ∈ C. For a residuated
lattice L, we write C(L) for the set of all convex subalgebras of L, partially
ordered by set-inclusion. It is easy to see that the intersection of any family
of convex subalgebras of L is again a convex subalgebra of L, and so is the
union of any up-directed family of convex subalgebras. Thus, C(L) is an
algebraic closure system.

For any S ⊆ L, we let C[S] denote the smallest convex subalgebra of L
containing S. As is customary, we call C[S] the convex subalgebra generated
by S and let C[a] = C[{a}]. We refer to C[a] as the principal convex subal-
gebra of L generated by the element a. We say that a convex subalgebra of
L is finitely generated provided it is generated by some finite subset of L.
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Given a residuated lattice L and an element x ∈ L, the absolute value of
x is the element

|x| = x ∧ (e/x) ∧ e.

If X ⊆ L, we set |X| = {|x| : x ∈ X}. We note that in the case of GBL-
algebras, |x| = x ∧ (e/x).

The proof of the following lemma is routine:

Lemma 3.1. Let L be an e-cyclic residuated lattice, let x ∈ L, and let
a ∈ L−. The following conditions hold:

(1) x ≤ e iff |x| = x;

(2) |x| ≤ x ≤ |x|\e;

(3) |x| = e iff x = e;

(4) a ≤ x ≤ a\e iff a ≤ |x|; and

(5) if H ∈ C(L), then x ∈ H iff |x| ∈ H.

In what follows, given a residuated lattice L and a subset S ⊆ L, we write
〈S〉 for the submonoid of L generated by S. Thus, x ∈ 〈S〉 if and only if
there exist elements s1, . . . , sn ∈ S such that x = s1 · · · sn.

Lemma 3.2. Suppose L is an e-cyclic residuated lattice and let S ⊆ L. Then

C[S] = C[|S|] = {x ∈ L : h ≤ x ≤ h\e, for some h ∈ 〈|S|〉}
= {x ∈ L : h ≤ |x|, for some h ∈ 〈|S|〉}

Proof. It is clear, in view of the definition of |.| and Condition (2) of Lemma
3.1, that C[S] = C[|S|]. Hence, by Condition (4) of Lemma 3.1, it will suffice
to prove that C[|S|] = {x ∈ L : h ≤ x ≤ h\e, for some h ∈ 〈|S|〉}. Set
H = {x ∈ L : h ≤ x ≤ h\e, for some h ∈ 〈|S|〉}. It is clear that H ⊆ C[|S|].
We complete the proof by showing that H is a convex subalgebra of L that
contains |S|. Let s ∈ |S|. Then s ≤ s ≤ s\e since s ≤ e, and so |S| ⊆ H. Let
x, y ∈ H. There exist h, k ∈ 〈|S|〉 ⊆ L− such that h ≤ x ≤ h\e and k ≤ y ≤
k\e. It follows that (hk)(kh) ≤ hk ≤ xy ≤ (h\e)(k\e) ≤ kh\e ≤ (hkkh)\e.
This shows that xy ∈ H, and whence H is closed under multiplication. Also,
hk ≤ h ∧ k ≤ x ∧ y ≤ x ∨ y ≤ (h\e) ∨ (k\e) ≤ hk\e. Thus, x ∧ y, x ∨ y ∈ H,
and H is closed under the lattice operations.
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To demonstrate closure with respect to residuals, observe that y ≤ k\e =
e/k implies ykh ≤ h ≤ x whence hkh ≤ kh ≤ y\x, and on the other hand,
k ≤ y and x ≤ h\e imply y\x ≤ k\x ≤ k\(h\e) = hk\e ≤ hkh\e. Thus
hkh ≤ y\x ≤ hkh\e. Analogously, khk ≤ x/y ≤ khk\e because y ≤ k\e
implies hky ≤ h ≤ x, so khk ≤ hk ≤ x/y, and also x/y ≤ x/k ≤ (e/h)/
k = e/kh ≤ khk/e.

Order-convexity is almost immediate. Indeed, let z ∈ L such that x ≤
z ≤ y. Then hk ≤ h ≤ x ≤ z ≤ y ≤ k\e ≤ hk\e. Thus, z ∈ H and H is
convex.

The next two corollaries are immediate consequences of the preceding
result:

Corollary 3.3. Suppose L is an e-cyclic residuated lattice, and let a ∈ L.
Then

C[a] = C[|a|] = {x ∈ L : |a|n ≤ x ≤ |a|n\e, for some n ∈ N}
= {x ∈ L : |a|n ≤ |x|, for some n ∈ N}

Corollary 3.4. Let L be an e-cyclic residuated lattice, and let H be a convex
subalgebra of L. Then H = C[H−].

Recall that a prefilter (sometimes also called filter) of an integral residu-
ated lattice is a non-empty upwards closed subset that is closed under multi-
plication (e.g. [38]). In the integral case, it is quite obvious that prefilters are
exactly convex subalgebras. Using absolute values and Lemma 3.2 we can
similarly describe convex subalgebras also in the non-integral case. Prefilters
defined below are dual notions to ideals of DR`-monoids, which, as noted
earlier, are the duals of GBL-algebras; ideal lattices of these algebras were
studied in [21], [22] and [24].

We say that a non-empty subset P of an e-cyclic residuated lattice L is
a prefilter of L if

• xy ∈ P for all x, y ∈ P ; and

• for all x ∈ P and y ∈ L, |x| ≤ |y| implies y ∈ P .

Obviously, if P is a prefilter of L, then P− is a prefilter of the integral
residuated lattice L−. Further, the second condition entails that x ∈ P iff
|x| ∈ P , for all x ∈ L.
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Proposition 3.5. Let L be an e-cyclic residuated lattice, and P ⊆ L. Then
P is a prefilter of L iff it is a convex subalgebra of L.

Proof. Let P be a prefilter of L. If x ∈ C[P ], then by Lemma 3.2, there exist
p1, . . . , pn ∈ |P | such that p1 . . . pn ≤ |x|. As noted above, |P | ⊆ P , and since
P is closed under multiplication, we have that p1 . . . pn ∈ P . In other words,
p ≤ |x| for some p ∈ P , whence x ∈ P . Thus C[P ] ⊆ P and we conclude
that P = C[P ].

Conversely, recalling Lemma 3.1 (5), we see that every convex subalgebra
is a prefilter.

The next result shows that every finitely generated member of the alge-
braic closure system C(L) is principal, and that the poset of principal convex
subalgebras of L is a sublattice of C(L), denoted by K(C(L)).

Lemma 3.6. Let L be an e-cyclic residuated lattice, and a, b ∈ L. Then
C[a] ∩ C[b] = C[|a| ∨ |b|] and C[a] ∨ C[b] = C[|a| ∧ |b|] = C[|a||b|].

Proof. In view of Lemma 3.1 and Corollary 3.3, we may assume that a, b ∈
L−. We first establish the equality C[a] ∩ C[b] = C[a ∨ b]. We have a, b ≤
a ∨ b ≤ e and so C[a ∨ b] ⊆ C[a] ∩ C[b]. Now, let x ∈ C[a] ∩ C[b]. Then by
Corollary 3.3, am ≤ x ≤ am\e and bn ≤ x ≤ bn\e for m,n ∈ N. Note that
(a ∨ b)mn ≤ am ∨ bn. Hence, (a ∨ b)mn ≤ am ∨ bn ≤ x ≤ (am\e) ∧ (bn\e) =
(am ∨ bn)\e ≤ (a ∨ b)mn\e. It follows that x ∈ C[a ∨ b], and hence the first
equality holds.

We next show that C[a] ∨ C[b] = C[a ∧ b] = C[ab]. Since ab ≤ a ∧ b ≤
a, b ≤ e, we have C[a] ∨ C[b] ⊆ C[a ∧ b] ⊆ C[ab]. Also ab must belong to
C[a] ∨ C[b]. So, C[ab] ⊆ C[a] ∨ C[b].

The following trivial fact will used quite often in calculations:

Lemma 3.7. Let x1, . . . , xn, y ∈ L− in a residuated lattice L. Then

(x1 ∨ y) . . . (xn ∨ y) ≤ x1 . . . xn ∨ y.

Proof. Indeed, (x1 ∨ y)(x2 ∨ y) = x1x2 ∨ x1y ∨ yx2 ∨ y2 ≤ x1x2 ∨ y for n = 2,
and the rest is an easy induction.

This leads to the main result of this section:
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Theorem 3.8. If L is an e-cyclic residuated lattice, then C(L) is a dis-
tributive algebraic lattice. The poset K(C(L)) of compact elements of C(L) –
consisting of the principal convex subalgebras of L – is a sublattice of C(L).

Proof. Let L be an e-cyclic residuated lattice. In view of the preceding
results, we only need to prove that the lattice C(L) is distributive. To this
end, let X, Y, Z ∈ C(L), and let x ∈ X ∩ (Y ∨ Z). Then x ∈ X and there
exist a1, . . . , an ∈ Y − ∪ Z− such that a1 . . . an ≤ |x|. Invoking the preceding
lemma we get

(a1 ∨ |x|) . . . (an ∨ |x|) ≤ a1 . . . an ∨ |x| = |x|.

Since |x| ∈ X−, the element ai ∨ |x| belongs to (X ∩ Y )− when ai ∈ Y −,
or to (X ∩ Z)− when ai ∈ Z−. Therefore, |x|, and hence, by Lemma 3.1, x
is an element of C[(X ∩ Y ) ∪ (X ∩ Z)] = (X ∩ Y ) ∨ (X ∩ Z). This proves
X ∩ (Y ∨ Z) ⊆ (X ∩ Y ) ∨ (X ∩ Z), and the distributivity of C(L).

Since the variety of lattices is congruence-distributive, the distributivity
of the lattice C(L) also follows from the following:

Theorem 3.9. Let L be an e-cyclic residuated lattice. Then the lattice C(L)
can be embedded (as a complete sublattice) into the congruence lattice of the
lattice reduct of L.

Proof. For every H ∈ C(L), ΘH = {〈a, b〉 ∈ L2 : (a\b) ∧ (b\a) ∧ e ∈ H} is a
congruence of the lattice reduct (L,∨,∧) of L such that [e]ΘH

= H. Indeed,
it is proved in [5] and [19] that ΘH is a congruence of L provided that H is
a normal3 convex subalgebra, but normality of H is not used in proving that
ΘH is an equivalence relation which is compatible with the lattice operations.

It is easily seen that H ⊆ K iff ΘH ⊆ ΘK , for all H,K ∈ C(L). Thus the
map H 7→ ΘH is an order-embedding of C(L) into the congruence lattice of
(L,∨,∧), the lattice reduct of L.

Let {Hi : i ∈ I} be a collection of convex subalgebras of L, and let H =⋂
i∈I Hi and K =

∨
i∈I Hi in C(L). Writing Θi for ΘHi

, we obviously have⋂
i∈I Θi = ΘH and

∨
i∈I Θi ⊆ ΘK .

3Briefly, H ∈ C(L) is normal iff for all a, b ∈ L, (a\b)∧ e ∈ H iff (b/a)∧ e ∈ H. Normal
convex subalgebras are discussed in Section 5.
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Let 〈a, b〉 ∈ ΘK . Since ΘK is a lattice congruence, we may safely assume
that a ≤ b. Then (b\a) ∧ e ∈ K, so there exist x1, . . . , xm ∈

⋃
i∈I H

−
i such

that x1 . . . xm ≤ (b\a) ∧ e, whence bx1 . . . xm ≤ a. Then

xm ≤ (bx1 . . . xm−1\a) ∧ e ≤
(
(a ∨ bx1 . . . xm−1)\a

)
∧ e,

where the latter inequality follows from the fact that all residuated lattices
satisfy the inequality (x\y) ∧ e ≤ ((z ∨ x)\(z ∨ y)) ∧ e. Hence, letting z1 =
a∨bx1 . . . xm−1, we have a ≤ z1 and (z1\a)∧e ∈

⋃
i∈I Hi, so 〈a, z1〉 ∈

⋃
i∈I Θi.

Analogously,

xm−1 ≤ (bx1 . . . xm−2\bx1 . . . xm−2xm−1) ∧ e

≤
(
(a ∨ bx1 . . . xm−2)\(a ∨ bx1 . . . xm−2xm−1)

)
∧ e,

and letting z2 = a ∨ bx1 . . . xm−2, we get z1 ≤ z2 and (z2\z1) ∧ e ∈
⋃
i∈I Hi.

Thus 〈z1, z2〉 ∈
⋃
i∈I Θi. Repeating this procedure we get

x1 ≤ (b\bx1) ∧ e ≤ (b\(a ∨ bx1)) ∧ e,

so with zm−1 = a ∨ bx1 we have zm−1 ≤ b and (b\zm−1) ∧ e ∈
⋃
i∈I Hi. Thus

〈zm−1, b〉 ∈
⋃
i∈I Θi.

We have found z0, . . . , zm ∈ L such that a = z0 ≤ z1 ≤ · · · ≤ zm−1 ≤
zm = b and 〈zj, zj+1〉 ∈

⋃
i∈I Θi for j = 0, . . . ,m − 1, which means that

〈a, b〉 ∈
∨
i∈I Θi. Hence ΘK ⊆

∨
i∈I Θi and the proof is complete.

4. Polars and prime convex subalgebras

We have seen in the previous section that the lattice C(L) of convex
subalgebras of an e-cyclic residuated lattice L is an algebraic distributive
lattice. As such, it satisfies the join-infinite distributive law

X ∩
∨
i∈I

Yi =
∨
i∈I

(X ∩ Yi),

and hence it is relatively pseudocomplemented. That is, for all X, Y ∈ C(L),
the relative pseudocomplement X → Y of X relative to Y exists:

X → Y = max{Z ∈ C(L) : X ∩ Z ⊆ Y }.

The next lemma provides an element-wise description of X → Y in terms of
the absolute value, and in particular one for the pseudocomplement X⊥ =
X → {e} of X.

12



Lemma 4.1. If L is an e-cyclic residuated lattice, then C(L) is a relatively
pseudocomplemented lattice. Specifically, given X, Y ∈ C(L),

X → Y = {a ∈ L : |a| ∨ |x| ∈ Y, for all x ∈ X},

and in particular,

X⊥ = X → {e} = {a ∈ L : |a| ∨ |x| = e, for all x ∈ X}.

Proof. As noted above, C(L) is relatively pseudocomplemented. Thus the
proof is a direct consequence of Lemmas 3.1(5) and 3.6. Indeed, let X, Y ∈
C(L) and a ∈ L. Then a ∈ X → Y iff C[a] ⊆ X → Y iff C[a] ∩ X ⊆ Y
iff C[a] ∩ C[x] ⊆ Y, for all x ∈ X iff C[|a| ∨ |x|] ⊆ Y, for all x ∈ X iff
|a| ∨ |x| ∈ Y, for all x ∈ X. The description of X⊥ is clear.

We can define X⊥ for any non-empty subset X ⊆ L. It is not hard to
show that X⊥ = C[X]⊥, so X⊥ is always a convex subalgebra. We refer to
X⊥ as the polar of X; in case X = {x}, we write x⊥ instead of {x}⊥ (or
C[x]⊥) and refer to it as the principal polar of x.

The map ⊥ : C(L)→ C(L) is a self-adjoint inclusion-reversing map, while
the map sending H ∈ C(L) to its double polar H⊥⊥ is an intersection-
preserving closure operator on C(L). By a classic result due to Glivenko
(see, for example [4], page 157), the image of this closure operator is a (com-
plete) Boolean algebra BC(L) with least element {e} and largest element L.
The complement of H in BC(L) is precisely H⊥, whereas, for any pair of
convex subalgebras H,K ∈ BC(L),

H ∨BC(L) K = (H⊥ ∩K⊥)⊥ = (H ∪K)⊥⊥.

On the other hand, meets in BC(L) are just intersections.
Two identities of particular interest to us are the left prelinearity law LP

and the right prelinearity law RP:

((x\y) ∧ e) ∨ ((y\x) ∧ e) ≈ e,

((y/x) ∧ e) ∨ ((x/y) ∧ e) ≈ e.

Recall that H ∈ C(L) is said to be prime if it is meet-irreducible in C(L).
That is, whenever X, Y ∈ C(L), and X ∩ Y ⊆ H, then X ⊆ H or Y ⊆ H.
Either prelinearity law implies that the poset of prime convex subalgebras of
L is a root system (dual tree), as the next result shows.

The next lemma gives a characterization of prime convex subalgebras.
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Lemma 4.2. Let L be an e-cyclic residuated lattice that satisfies LP. Then
for every H ∈ C(L), the following are equivalent:

(1) H is a prime convex subalgebra of L.

(2) For all a, b ∈ L, if |a| ∨ |b| ∈ H, then a ∈ H or b ∈ H.

(3) For all a, b ∈ L, if |a| ∨ |b| = e, then a ∈ H or b ∈ H.

(4) For all a, b ∈ L, (a\b) ∧ e ∈ H or (b\a) ∧ e ∈ H.

(5) The set of all convex subalgebras exceeding H is a chain under set-
inclusion.

Proof.

(1) implies (2): If |a|∨|b| ∈ H, then C[a]∩C[b] = C[|a|∨|b|] ⊆ H, whence
C[a] ⊆ H or C[b] ⊆ H, so a ∈ H or b ∈ H, by Lemma 3.6.

(2) implies (3): It follows by specialization.
(3) implies (4): Since ((a\b) ∧ e) ∨ ((b\a) ∧ e) = e by LP, it follows that

(a\b) ∧ e ∈ H or (b\a) ∧ e ∈ H.
(4) implies (5): Suppose that X and Y are two incomparable convex

subalgebras that exceed H. Then there exist a ∈ X \Y and b ∈ Y \X and we
may assume that a, b ∈ L−. If (a\b)∧e ∈ H ⊆ X, then a((a\b)∧e) ∈ X which
implies b ∈ X because a((a\b)∧e) ≤ b ≤ e. Analogously, if (b\a)∧e ∈ H ⊆ Y ,
then b((b\a)∧ e) ∈ Y whence a ∈ Y . In either case we reach a contradiction.

(5) implies (1): Obvious.

It is worth noting that Conditions (1) and (4) are equivalent if and only
if L satisfies LP. Indeed, suppose that L does not satisfy LP, i.e., there exist
a, b ∈ L such that s = ((a\b)∧ e)∨ ((b\a)∧ e) < e. Now, if V is a value4 of s,
then clearly neither (a\b)∧e nor (b\a)∧e belongs to V (for otherwise s ∈ V ).
Thus V is a prime convex subalgebra which does not fulfill Condition (4).

We also note that the right prelinearity law RP can be used to obtain the
dual of Lemma 4.2. One simply replaces \ by / in Condition (4).

Lemma 4.2 has the following important consequence:

4A value of an element a ∈ L is a (necessarily completely meet-irreducible) convex
subalgebra that is maximal with respect to not containing a.
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Corollary 4.3. Let L be an e-cyclic residuated lattice that satisfies either
prelinerity law. If C(L) – equivalently, K(C(L)) – is totally ordered, then so
is L.

A lower-bounded distributive lattice A = (A,∨,∧,⊥) is said to be rela-
tively normal provided its prime ideals form a root-system under set-inclusion.
Relatively normal lattices form an important class of lattices. They include
dual relative Stone lattices, the lattice of cozero-sets of any topological space,
and the lattices of compact congruences for many well-studied ordered alge-
braic structures such as semilinear `-groups, Reisz spaces, f -rings, etc. (The
reader is referred to [36] and [17] for details and an extensive bibliography on
this class.) Lemma 4.2 implies that the lattice K(C(L)) of principal convex
subalgebras of an e-cyclic residuated lattice that satisfies either prelinearity
law is relatively normal.

The next result, due essentially to Monteiro [31], [32], catalogues several
conditions that are equivalent to relative normality. Its easy proof is left to
the reader.

Proposition 4.4. For a lower-bounded, distributive lattice A, the following
are equivalent:

(1) A is relatively normal;

(2) Any two incomparable prime ideals in A have disjoint open neighbor-
hoods in the Stone space of A;

(3) The join of any pair of incomparable prime filters in A is all of A; and

(4) For all a, b ∈ A, there exist u, v ∈ A such that u ∧ v = ⊥ and u ∨ b =
a ∨ b = a ∨ v.

Condition (4) is a key property for the structure of relatively normal
lattices. While the relative normality of K(C(L)) follows from Lemma 4.2,
we can use Condition (4) to provide an alternative proof of this fact.

Proposition 4.5. Let L be an e-cyclic residuated lattice that satisfies either
prelinerity law. Then K(C(L)) is a relatively normal lattice.

Proof. Without loss of generality, we will assume that L satisfies LP. We
have already established that K(C(L)) is a lower-bounded distributive lat-
tice, whose elements are the principal convex subalgebras of L. Let X, Y ∈
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K(C(L)). By Corollary 3.3, there exist a, b ∈ L− such that X = C[a] and
Y = C[b]. Let u = (b\a)∧ e and v = (a\b)∧ e. We know by Lemma 3.6 that
C[u]∩C[v] = C[u∨v]. Consequently, since u∨v = ((a\b)∧e)∨((b\a)∧e) = e,
we see that C[u] ∩ C[v] = {e}.

To complete the proof, we need to show that C[a] ∨ C[v] = C[a] ∨ C[b] =
C[u] ∨ C[b]. We just prove that C[a] ∨ C[v] = C[a] ∨ C[b]; the proof of the
other equality is analogous.

To prove that C[a]∨C[v] ⊆ C[a]∨C[b], it suffices, by Lemma 3.6, to prove
that a∧v ∈ C[a]∨C[b]. Since a ≤ e by assumption, we know a∧v = a∧(a\b).
By definition, C[a]∨C[b] = C[{a, b}]; hence, it is clear that a∧v ∈ C[a]∨C[b].

To obtain the reverse inclusion, it suffices by Lemma 3.6 to prove that
a ∧ b ∈ C[a] ∨ C[v]. Observe that (a ∧ v)2 = (a ∧ (a\b))2 ≤ a2 ≤ a, and
(a ∧ v)2 = (a ∧ (a\b))2 ≤ a(a\b) ≤ b. It follows that (a ∧ v)2 ≤ a ∧ b. Since
a ∧ b ≤ e by assumption, convexity now implies that a ∧ b ∈ C[a] ∨C[v].

We close this section by discussing the relationship of principal polars
with minimal prime convex subalgebras. A result that has appeared in a
number of papers, ranging from `-groups to MV-algebras and other more
general classes of bounded residuated lattices, states that if H is a minimal
prime convex subalgebra (called filter or prefilter in this case) of such an
algebra, then H =

⋃
{x⊥ : x 6∈ H}. We want to draw attention to [37] where

it is shown that this is truly a result about algebraic distributive lattices, and
has little to do with particular properties of the algebras in question. For the
convenience of the reader, we provide the details of this relationship.

In the remainder of this section, A will denote a nontrivial algebraic
distributive lattice whose poset K(A) of compact elements forms a sublattice.
The top and bottom elements of A will be denoted by > and ⊥, respectively.
We use a → b to denote the relative pseudocomplement of a relative to b,
and write ¬a for the pseudocomplement a→ ⊥ of a.

Lemma 4.6. Let p be a meet-irreducible element of A, let a ∈ K(A), and
let b ∈ A such that a→ b ≤ p. Then there exists a meet-irreducible element
q such that a 6≤ q and b ≤ q ≤ p.

Proof. Let S = {s ∈ A : s ≥ b and a → s ≤ p}. Note that S 6= ∅ since
b ∈ S. By Zorn’s Lemma, S has a maximal element q. We claim that q is
meet-irreducible. Let us assume that this is not the case. Then there exist
elements x, y ∈ A such that x 6≤ q, y 6≤ q, and x∧ y ≤ q. By the maximality
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of q, a → (q ∨ x) 6≤ p, and a → (q ∨ y) 6≤ p. Thus, there exist compact
elements c1, c2 6≤ p such that c1 ≤ a → (q ∨ x) and c2 ≤ a → (q ∨ y). The
last two inequalities are equivalent to a ∧ c1 ≤ q ∨ x and a ∧ c2 ≤ q ∨ y.
So a ∧ (c1 ∧ c2) ≤ (q ∨ x) ∧ (q ∨ y) = q ∨ (x ∧ y) = q. Now c1 ∧ c2 ∈
K(A) and c1 ∧ c2 6≤ p. Thus, c1 ∧ c2 ≤ a → q and c1 ∧ c2 6≤ p, showing
that a→ q 6≤ p, contradicting the fact that q ∈ S. We have shown that q is
meet-irreducible. Lastly, a→ q ≤ p implies that q ≤ p.

The minimal elements of the partially ordered set of meet-irreducible
elements of A will be referred to as minimal meet-irreducible elements of A.

We state the following result for future reference:

Lemma 4.7. Every meet-irreducible element of A exceeds a minimal meet-
irreducible element. In particular, the meet of all minimal meet-irreducible
elements is the bottom element ⊥.

Proof. A direct application of Zorn’s Lemma implies that every meet-irreducible
element exceeds a minimal meet-irreducible element. The second statement is
a direct consequence of the fact that in an algebraic lattice every element is a
meet of meet-irreducible (in fact, completely meet-irreducible) elements.

The next result provides a useful characterization of minimal meet-irreducible
elements.

Lemma 4.8. For a meet-irreducible element p of A, the following statements
are equivalent:

(1) p is a minimal meet-irreducible element;

(2) for all c ∈ K(A), c ≤ p implies ¬c 6≤ p;

(3) p =
∨
{¬c : c ∈ K(A), c 6≤ p}.

Proof.

(1) implies (2): Assume that (2) fails. Then there exists a ∈ K(A) such
that a,¬a ≤ p. By Lemma 4.6 for b = ⊥, there exists a meet-irreducible
element q such that a 6≤ q and b ≤ q ≤ p. However, since a ≤ p, it follows
that q < p, and hence p is not a minimal meet-irreducible element of A.

(2) implies (3): Set x =
∨
{¬c : c ∈ K(A), c 6≤ p}. It is clear that x ≤ p.

Let now t ∈ K(A), t ≤ p. By (2), ¬t 6≤ p, and hence there exists compact
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s 6≤ p such that t ∧ s = ⊥. It follows that t ≤ ¬s ≤ x. This shows that
x = p.

(3) implies (1): Suppose that (1) fails and (3) holds. Let q < p be a meet-
irreducible element. Let t ∈ K(A) such that t ≤ p and t 6≤ q. Now t∧¬t = ⊥,
and hence ¬t ≤ q < p. Thus, t,¬t ≤ p. Since p =

∨
{¬c : c ∈ K(A), c 6≤ p},

there exist compact elements c1, . . . , cn 6≤ p such that t ≤ ¬c1 ∨ . . .∨¬cn. So
¬(¬c1∨. . .∨¬cn) = ¬¬c1∧. . .∧¬¬cn ≤ ¬t ≤ p. This yields the contradictory
inequality c1 ∧ . . . ∧ cn ≤ p.

Lemmas 4.7 and 4.8 have the following corollaries in the setting of e-cyclic
residuated lattices.

Proposition 4.9. Every prime convex subalgebra of an e-cyclic residuated
lattice L exceeds a minimal prime convex subalgebra. In particular, the in-
tersection of all minimal prime convex subalgebras of L is {e}.

Proposition 4.10. For a prime convex subalgebra P of an e-cyclic residuated
lattice L, the following statements are equivalent:

(1) P is a minimal prime convex subalgebra of L;

(2) for all x ∈ L, x ∈ P implies x⊥ 6⊆ P ; and

(3) P =
⋃
{x⊥ : x ∈ L \ P}.

Proof. The proof follows directly from Lemma 4.8. In Condition (3), join
can be replaced by union because the set {x⊥ : x ∈ L\P} is up-directed.

Another result that has been proved for various particular classes of resid-
uated lattices is Proposition 4.12 below. It is but a direct translation of the
following lattice-theoretical result (which does not require that K(A) be a
sublattice of A, see [36]).

Lemma 4.11. Let A be an algebraic distributive lattice. For every a ∈ A,
¬a =

∧
{p ∈ A : p minimal meet-irreducible and a � p}.

Proof. Clearly, if p is a (minimal) meet-irreducible element, then ¬a ≤ p,
since a ∧ ¬a = ⊥. Let c be a compact element such that c � ¬a, i.e.
c ∧ a 6= ⊥. By Lemma 4.7, there exists a minimal meet-irreducible element
q ∈ A with c ∧ a � q. Then a � q and c � q, and hence c �

∧
{p ∈

A : p minimal meet-irreducible and a � p}.
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Proposition 4.12. Let L be an e-cyclic residuated lattice. For every H ∈
C(L), H⊥ =

⋂
{P ∈ C(L) : P minimal prime and H * P}.

In what follows, we generalize another traditional characterization of min-
imal prime convex `-subgroups, namely, the one using ultrafilters of the pos-
itive cone of an `-group. In the setting of e-cyclic residuated lattices, we
prove that a prime convex subalgebra P of L is minimal prime iff L− \ P is
a maximal ideal of the lattice reduct of L−.

Lemma 4.13. Let L be an e-cyclic residuated lattice and let I ⊆ L−. Then
I is a maximal ideal of (L−,∨,∧) iff L− \ I is a minimal prime5 filter of
(L−,∨,∧). In this case, H =

⋃
{a⊥ : a ∈ I} is the convex subalgebra of L

generated by L− \ I, H is a minimal prime, and H− = L− \ I.

Proof. We first establish the latter statement, so let I be a maximal ideal of
(L−,∨,∧). Recalling that all principal polars a⊥ (a ∈ L) are convex subalge-
bras of L (cf. the remarks after Lemma 4.1), and since the set {a⊥ : a ∈ I}
is up-directed, we see that H =

⋃
{a⊥ : a ∈ I} is a convex subalgebra of L.

Furthermore, for all x ∈ L− we have:

x ∈ a⊥ for some a ∈ I iff x /∈ I. (4.1)

Indeed, if x ∈ a⊥ ∩ I for some a ∈ I, then e = x ∨ a ∈ I, which contradicts
maximality of I, and conversely, if x /∈ I, then the lattice ideal generated by
I ∪ {x} is all of L−, so x ∨ a = e for some a ∈ I, i.e. x ∈ a⊥. It follows that
L− \ I = H−, whence we get H = C[L− \ I].

Condition (4.1) also implies that I is a prime ideal.6 Indeed, if x, y ∈
L− \ I, then there exist a, b ∈ I such that x ∈ a⊥ and y ∈ b⊥. But we have
a⊥∪b⊥ ⊆ (a∨b)⊥ and (a∨b)⊥ ∈ C(L), hence x∧y ∈ (a∨b)⊥. Since a∨b ∈ I,
by (4.1) we conclude that x ∧ y /∈ I.

Now, L−\I is a prime filter, and it must be minimal prime since for every
prime filter F ⊆ L− \ I, L− \ F is a prime ideal with I ⊆ L− \ F .

5Here, a lattice filter or ideal X is prime if whenever x� y ∈ X, where � is ∨ or ∧, then
also x ∈ X or y ∈ X.

6A proof here is necessary, since we do not assume that (L−,∨,∧) is a distributive
lattice. A direct argument: Let I be a maximal ideal of the lattice (L−,∨,∧), and suppose
to the contrary that x∧y ∈ I for some x, y ∈ L− \ I. Then the ideals generated by I ∪{x}
and by I ∪ {y} are both equal to L−, i.e., there exist a, b ∈ I such that x ∨ a = e = y ∨ b.
Then, by Lemma 3.7, e = (a ∨ b ∨ x)(a ∨ b ∨ y) ≤ a ∨ b ∨ xy ≤ a ∨ b ∨ (x ∧ y) ≤ e, so
e = a ∨ b ∨ (x ∧ y) ∈ I, which is a contradiction.
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Conversely, let L− \ I be a minimal prime filter. Then I is a prime ideal,
and if J is a maximal ideal with I ⊆ J , then by the first part of the proof we
know that L− \J is a prime filter with L− \J ⊆ L− \I. Thus L− \J = L− \I
and J = I.

We have shown that if a lattice with greatest element is the lattice reduct
of the negative cone of an e-cyclic residuated lattice, then every maximal
lattice ideal is a prime ideal; however, the converse is not true. For instance,
the pentagon N5 = {0, a, b, c, 1} – where 0 < 1 are the bounds and c is
incomparable to a < b – cannot be made an integral residuated lattice,
though all maximal ideals are prime. Indeed, were it possible, we would have
bc ≤ b ∧ c = 0 and a ∨ c = 1, whence b = b(a ∨ c) = ba ∨ bc = ba ≤ a.

Proposition 4.14. Let L be an e-cyclic residuated lattice. For every prime
convex subalgebra P ∈ C(L), the following are equivalent:

(1) P is a minimal prime convex subalgebra of L;

(2) L− \ P is a maximal ideal of (L−,∨,∧); and

(3) P− is a minimal prime filter of (L−,∨,∧).

Proof. Since P is a prime convex subalgebra, P− is a prime filter and I =
L− \ P is a prime ideal of (L−,∨,∧). Conditions (2) and (3) are equivalent
by the previous lemma.

(1) implies (2): If the convex subalgebra P is minimal prime, then P =⋃
{a⊥ : a ∈ I}. Hence, if x ∈ L− \ I = P−, then x ∈ a⊥ for some a ∈ I. Thus

x∨ a = e belongs to the lattice ideal generated by I ∪ {x}, proving that I is
a maximal ideal.

(2) implies (1): Let x ∈ P . Since |x| /∈ I and I is a maximal ideal, by
(4.1) we have |x| ∈ a⊥ for some a ∈ I = L− \ P . In other words, a ∈ x⊥ \ P ,
i.e. x⊥ * P . By Proposition 4.10 (2) we conclude that P is a minimal prime
convex subalgebra.

5. Semilinearity

Some prominent varieties of residuated lattices – such as Abelian `-groups,
MV-algebras, and BL-algebras – are generated by their linearly ordered mem-
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bers. We refer to such varieties as semilinear 7 varieties, and denote the va-
riety of all semilinear residuated lattices by SemRL. Thus, a residuated
lattice is semilinear iff it is a subdirect product of totally ordered residuated
lattices.

Our primary focus in this section is the variety of (e-cyclic) semilinear
residuated lattices. We first recall the axiomatization from [5] and [19] and
then present an alternative axiomatization that does not involve multipli-
cation. The main result of this section is Theorem 5.6, which provides a
description of semilinear e-cyclic residuated lattices in terms of (minimal)
prime convex subalgebras and (principal) polars. In particular, semilinearity
can be decided from the lattice of convex subalgebras. These results ex-
tend analogous characterizations of semilinearity in the setting of `-groups,
integral residuated lattices [38] and GBL-algebras [22].

Let L be a residuated lattice. Given an element u ∈ L, we define

λu(x) = (u\xu) ∧ e and ρu(x) = (ux/u) ∧ e,

for all x ∈ L. We refer to λu and ρu as left conjugation and right conjugation
by u. An iterated conjugation map is a composition γ = γ1γ2 . . . γn, where
each γi is a right conjugation or a left conjugation by an element ui ∈ L.
The set of all iterated conjugation maps will be denoted by Γ.

A convex subalgebra H of L is said to be normal if for all x ∈ H and
y ∈ L, (y\xy) ∧ e ∈ H and (yx/y) ∧ e ∈ H. The following result follows
immediately from the definition of a normal convex subalgebra.

Lemma 5.1 ([5], [19]). For a convex subalgebra H of a residuated lattice L,
the following statements are equivalent:

(1) H is normal.

(2) H is closed under all iterated conjugation maps.

(3) For all a, b ∈ L, (a\b) ∧ e ∈ H if and only if (b/a) ∧ e ∈ H.

The algebraic closure system of normal convex subalgebras of L will be de-
noted by NC(L). Given a normal convex subalgebra H of L, ΘH = {〈x, y〉 ∈
L2 : (x\y)∧ (y\x)∧ e ∈ H} is a congruence of L. Conversely, given a congru-
ence Θ, the equivalence class [e]Θ is a normal convex subalgebra. Moreover:

7The more traditional, but less descriptive, name for these varieties is representable.
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Lemma 5.2 ([5], [19]; see also [39] or [14]). The lattice NC(L) of normal
convex subalgebras of a residuated lattice L is isomorphic to its congruence
lattice Con(L). The isomorphism is given by the mutually inverse maps
H 7→ ΘH and Θ 7→ [e]Θ.

In what follows, if H is a normal convex subalgebra of L, we write L/
H for the quotient algebra L/ΘH , and denote the equivalence class of an
element x ∈ L by [x]H . We mention that NC(L) is an algebraic distributive
lattice, for any residuated lattice L. This can be verified directly, or be
derived as a consequence of the fact that L has a lattice reduct, and hence
it is congruence distributive. We also mention the trivial fact that in a
commutative residuated lattice, every convex subalgebra is normal.

We will make use of the following auxiliary result:

Lemma 5.3 ([5], [19]). Let L be a residuated lattice, let S ⊆ L, and let |S|
denote the set of absolute values of elements of S. Let Γ be the set of all
iterated conjugate maps on L, let Γ[|S|] = {γ(a) : a ∈ |S|, γ ∈ Γ}, and let
〈Γ[|S|]〉 be the submonoid of L generated by Γ[|S|]. Then:

(1) The normal convex subalgebra NC[S] of L generated by S is

NC[S] = NC[|S|] = {x ∈ L : y ≤ x ≤ y\e, for some y ∈ 〈Γ[|S|]〉}
= {x ∈ L : y ≤ |x|, for some y ∈ 〈Γ[|S|]〉}

(2) The normal convex subalgebra NC[a] of L generated by an element a ∈
L is

NC[a] = NC[|a|] = {x ∈ L : y ≤ x ≤ y\e, for some y ∈ 〈Γ[|a|]〉}
= {x ∈ L : y ≤ |x|, for some y ∈ 〈Γ[|a|]〉}

(3) NC[|a| ∨ |b|] ⊆ NC[a]∩NC[b] and NC[a]∨NC[b] = NC[|a| ∧ |b|], for all
a, b ∈ L.

Once we know that the normal convex subalgebra NC[S] generated by a
set S is the convex subalgebra C[Γ[|S|]] generated by Γ[|S|], we can easily
prove the following:

Proposition 5.4. For an e-cyclic residuated lattice L, the lattice NC(L) is
a complete sublattice of C(L).
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Proof. Let {Hi : i ∈ I} be a family of normal convex subalgebras of L, and

put H =
⋃
i∈I Hi. Let x ∈

∨NC(L)
i∈I Hi = NC[H] = NC[|H|], i.e., |x| ≥ y for

some y ∈ 〈Γ[|H|]〉. But the Hi’s are normal, thus Γ[|H|] =
⋃
i∈I Γ[|Hi|] =⋃

i∈I |Hi| = |H|. Hence y ∈ 〈|H|〉 and x ∈ C[H] =
∨C(L)
i∈I Hi. The converse

inclusion is obvious, hence the joins in NC(L) are the same as those in
C(L).

The following result, which follows directly from Lemma 4.2 and Corol-
lary 4.3, will be useful in our considerations.

Lemma 5.5. Let L be an e-cyclic residuated lattice that satisfies one of the
prelinearity laws. If H is a normal prime convex subalgebra of L, then L/H
is totally ordered.

It was shown in [5] and [19] that SemRL can be axiomatized – relative
to RL – by either of the equations below:

λu((x ∨ y)\x) ∨ ρv((x ∨ y)\y) ≈ e, (5.1)

λu(x/(x ∨ y)) ∨ ρv(y/(x ∨ y)) ≈ e. (5.2)

Note that the substitution u = v = e shows that the left prelinearity law
LP is an immediate consequence of (5.1), and likewise RP follows from (5.2).

Also note that for `-groups, by substituting u = y = e in (5.1) we obtain
the identity x∨ vx−1v−1 ≥ e, which axiomatizes semilinear `-groups (see e.g.
[2] or [11]).

The next theorem generalizes the classical results on semilinear `-groups
as well as all analogous results characterizing semilinear members of some
classes of residuated lattices – see [12] for pseudo-MV-algebras, [23] for
pseudo-BL-algebras, [22] for GBL-algebras (DR`-monoids), and [38] for in-
tegral residuated lattices.

Theorem 5.6. For a variety V of residuated lattices, the following statements
are equivalent:

(1) V is semilinear.

(2) V satisfies either of the equations (5.1) and (5.2).

(3) V satisfies either of the prelinearity laws and the quasi-idenitity

x ∨ y ≈ e ⇒ λu(x) ∨ ρv(y) ≈ e. (5.3)
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If in addition V is a variety of e-cyclic residuated lattices and satisfies either
of the prelinearity laws, the preceding conditions are equivalent to each of the
conditions below:

(4) For every L ∈ V, all (principal) polars in L are normal.

(5) For every L ∈ V, all minimal prime convex subalgebras of L are normal.

Proof. The equivalence of the first three conditions was established in [5] and
[19]. We provide a streamlined proof here for the convenience of the reader.

(1) implies (2): The equations (5.1) and (5.2) hold in semilinear residu-
ated lattices because they hold in totally ordered ones.

(2) implies (3): Let us assume that (5.1) holds. As was noted earlier, the
substitution u = v = e demonstrates that the left prelinearity law LP holds.
Let now L ∈ V , and x, y ∈ L such that x ∨ y = e. Note that x = e\x =
(x ∨ y)\x, and likewise, y = (x ∨ y)\y. Thus, invoking the equation, we get
λu(x)∨ρv(y) = λu((x∨y)\x))∨ρv((x∨y)\y)) = e for all u, v ∈ L. Condition
(3) is established.

(3) implies (1): Let L ∈ V . First, we observe that if x, y ∈ L are such that
x∨y = e, then the quasi-identity (5.3) entails that λu(x)∨y = e = x∨ρv(y) for
all u, v ∈ L, whence it easily follows that γ1(x) ∨ γ2(y) = e for all γ1, γ2 ∈ Γ.
Second, if xi, yj ∈ L are such that xi∨yj = e for i = 1, . . . ,m and j = 1, . . . , n,
then x1 . . . xn ∨ y1 . . . yn = e by Lemma 3.7. Recalling Lemma 5.3 (2), these
two simple observations imply that NC[x]∩NC[y] = {e} whenever x∨y = e.

Now, suppose that L ∈ V is subdirectly irreducible and that V satisfies
the left prelinearity law LP. Then, for any a, b ∈ L, we have NC[(a\b) ∧ e] ∩
NC[(b\a) ∧ e] = {e}, which – owing to subdirect irreducibility – is possible
only if NC[(a\b) ∧ e] = {e} or NC[(b\a) ∧ e] = {e}. In the former case, we
get (a\b)∧ e = e and a ≤ b, while in the latter case, (b\a)∧ e = e and b ≤ a.
Thus L is totally ordered.

(1) implies (4): In order to show that every polar is normal, it will suffice
to show that every principal polar is normal. To this end, consider a principal
polar

h⊥ = {a ∈ L : |a| ∨ |h| = e}. (Refer to Lemma 4.1.)

Let a ∈ h⊥ and u ∈ L. Then |a| ∨ |h| = e yields e = λu(|a|) ∨ ρe(|h|) =
λu(|a|)∨ |h|, so λu(|a|) ∈ h⊥. But |a| ≤ a implies λu(|a|) ≤ λu(a), and hence
λu(a) ∈ h⊥. Likewise, ρu(a) ∈ h⊥. We have established that h⊥ is a normal
convex subalgebra of L.
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(4) implies (5): Let H ∈ C(L) be a minimal prime convex subalgebra of
L. In light of Proposition 4.10, H =

⋃
{h⊥ : h ∈ L \ H}. Since each h⊥ is

normal, then so is H.
(5) implies (1): Let {Hi : i ∈ I} be the set of minimal prime convex

subalgebras of L. In view of Lemma 5.5, each quotient algebra L/Hi is
totally ordered. Moreover, by Proposition 4.9, the intersection of the Hi’s
is just {e}. It follows that L is a subdirect product of the residuated chains
L/Hi (i ∈ I), and thus it is semilinear.

A direct inspection of the proof shows that instead of the equations (5.1)
and (5.2) we could equally use the equations

λu((y\x) ∧ e) ∨ ρv((x\y) ∧ e) ≈ e,

λu((x/y) ∧ e) ∨ ρv((y/x) ∧ e) ≈ e.

It should be noted that the equations (5.1) and (5.2), as well as the above
equations, involve all the operation symbols. It is interesting to note that a
purely implicational characterization of the variety SemIRL of semilinear
integral residuated lattices, relative to the variety IRL of integral residuated
lattices, was conjectured in [38] and proven in [25]. The defining equation
is the following:

((x\y)\u)\
[([

w/(w/[((y\x)\z)\z])
]
\u
)
\u
]
≈ e.

Theorem 5.9 presents a characterization of SemRL that does not involve
multiplication.

A ∗-conjugate map is a map of the form λ∗u(x) = ((x\u)\u)∧e or ρ∗u(x) =
(u/(u/x)) ∧ e. We have the following analogue of Lemma 5.1:

Lemma 5.7. Let L be an arbitrary residuated lattice. A convex subalgebra
H ∈ C(L) is normal if and only if λ∗u(x) and ρ∗u(x) ∈ H, for all x ∈ H and
u ∈ L.

Proof. Let H be a convex normal subalgebra of L. Consider x ∈ H and
u ∈ L. We proceed to show that λ∗u(x) ∈ H (with the proof of ρ∗u(x) ∈ H
being analogous). By assumption, λ(x\u)(x) = [(x\u)\x(x\u)] ∧ e ∈ H.
Thus, taking into account the inequality x(x\u) ≤ u, we get λ(x\u)(x) ≤
[(x\u)\u] ∧ e = λ∗u(x) ≤ e. Thus, λ∗u(x) ∈ H.

Conversely, suppose that λ∗u(x) and ρ∗u(x) ∈ H, for all x ∈ H and u ∈ L.
Let x ∈ H and u ∈ L. Then λ∗xu(x) = ((x\xu)\xu)∧e ∈ H. Since u ≤ x\xu,
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we have λ∗xu(x) ≤ (u\xu) ∧ e = λu(x) ≤ e. Thus λu(x) ∈ H. Likewise,
ρu(x) ∈ H.

An ∗-iterated conjugation map is a composition γ∗ = γ∗1γ
∗
2 . . . γ

∗
n, where

each γ∗i is a λ∗u or a ρ∗u, for element u ∈ L. The set of all ∗-iterated conjugation
maps will be denoted by Γ∗.

The next result is an analogue of Lemma 5.3. It follows from that result
and the proof of Lemma 5.7.

Lemma 5.8. Let L be a residuated lattice, let S ⊆ L, and let |S| denote
the set of absolute values of elements of S. Let Γ∗ be the set of all ∗-iterated
conjugate maps on L, let Γ∗[|S|] = {γ∗(a) : a ∈ |S|, γ∗ ∈ Γ∗}, and let 〈Γ∗[|S|]〉
be the submonoid of L generated by Γ∗[|S|]. Then:

(1) The normal convex subalgebra NC[S] of L generated by S is

NC[S] = NC[|S|] = {x ∈ L : y ≤ x ≤ y\e, for some y ∈ 〈Γ∗[|S|]〉}
= {x ∈ L : y ≤ |x|, for some y ∈ 〈Γ∗[|S|]〉}

(2) The normal convex subalgebra NC[a] of L generated by an element a ∈
L is

NC[a] = NC[|a|] = {x ∈ L : y ≤ x ≤ y\e, for some y ∈ 〈Γ∗[|a|]〉}
= {x ∈ L : y ≤ |x|, for some y ∈ 〈Γ∗[|a|]〉}

The following theorem gives the promised alternative axiomatization of
SemRL in terms of ∗-conjugations λ∗u and ρ∗u.

Theorem 5.9. For a variety V of residuated lattices, the following statements
are equivalent:

(1) V is semilinear;

(2) V satisfies either of the equations

λ∗u((x ∨ y)\x) ∨ ρ∗v((x ∨ y)\y) ≈ e, (5.4)

λ∗u(x/(x ∨ y)) ∨ ρ∗v(y/(x ∨ y)) ≈ e; (5.5)

(3) V satisfies either of the prelinearity laws and the quasi-idenitity

x ∨ y ≈ e ⇒ λ∗u(x) ∨ ρ∗v(y) ≈ e. (5.6)

26



Proof. We can mimic the corresponding part of the proof of Theorem 5.6,
or we can simply observe that the (quasi-)identities (5.1), (5.2) and (5.3) are
equivalent to the (quasi-)identities (5.4), (5.5) and (5.6), respectively. In-
deed, when proving Lemma 5.7, we have actually shown that the inequalities
λ∗xy(x) ≤ λy(x) and λx\y(x) ≤ λ∗y(x), and symmetrically, ρ∗yx(x) ≤ ρy(x) and
ρy/x(x) ≤ ρ∗y(x), hold in any residuated lattice L. Hence, it is easy to see
that, for any x, y ∈ L, if L satisfies λu(x)∨ ρv(y) = e for all u, v ∈ L, then L
satisfies λ∗u(x) ∨ ρ∗v(y) = e for all u, v ∈ L, and vice versa.

We should remark that similarly to Theorem 5.6, the identities (5.4) and
(5.5) in Theorem 5.9 could be replaced by the identities

λ∗u((y\x) ∧ e) ∨ ρ∗v((x\y) ∧ e) ≈ e,

λ∗u((x/y) ∧ e) ∨ ρ∗v((y/x) ∧ e) ≈ e.

6. Hamiltonian residuated lattices

This section is devoted to e-cyclic residuated lattices whose convex sub-
algebras are normal. An e-cyclic residuated lattice with this property will be
called Hamiltonian.8 Clearly, every Abelian `-group is Hamiltonian, while
`-groups whose group reducts are nilpotent groups serve as interesting ex-
amples of non-commutative residuated lattices that are Hamiltonian ([20]).
Hamiltonian varieties of e-cyclic residuated lattices provide natural gener-
alizations of the variety of commutative residuated lattices. Their normal
convex subalgebras admit the simple description of Lemma 3.2, rather than
that of Lemma 5.3; equivalently, their logical counterparts admit a local de-
duction theorem instead of a parametrized local deduction theorem ([14]). It
is known that the class HamLG of all `-groups with this property is merely
a torsion class, while the largest variety contained in HamLG is the variety
of weakly Abelian `-groups ([27], [34]). As we will see, the analogy fails to
be true for e-cyclic residuated lattices. More specifically, there is no maximal
variety of Hamiltonian e-cyclic residuated lattices.

We first characterize individual Hamiltonian residuated lattices:

8The term is borrowed from group theory, where it is usually used to designate a non-
commutative group whose subgroups are normal. A typical example of a Hamiltonian
group is the quaternion group.
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Lemma 6.1. For an e-cyclic residuated lattice L, the following are equiva-
lent:

(1) L is Hamiltonian.

(2) For all a ∈ L− and b ∈ L, there exist m,n ∈ N such that am ≤ λb(a)
and an ≤ ρb(a).

(3) For all a, b ∈ L there exist m,n ∈ N such that (a ∧ e)m ≤ λb(a) and
(a ∧ e)n ≤ ρb(a).

(4) For all a, b ∈ L there exist m,n ∈ N such that |a|m ≤ λb(a) and
|a|n ≤ ρb(a).

Proof.

(1) implies (2): For every a ∈ L−, the convex subalgebra C[a] is normal,
so λb(a), ρb(a) ∈ C[a] for every b ∈ L. Hence, by Corollary 3.3, there exist
m,n ∈ N such that am ≤ λb(a) and an ≤ ρb(a).

(2) implies (3): Clearly, (a ∧ e)m ≤ λb(a ∧ e) ≤ λb(a) and, likewise,
(a ∧ e)n ≤ ρb(a).

(3) implies (4): It suffices to observe that |a|k ≤ (a ∧ e)k for any k ∈ N.
(4) implies (1): Let H ∈ C(L). For all a ∈ H and b ∈ L, there exist

m,n ∈ N with such that |a|m ≤ λb(a) and |a|n ≤ ρb(a). This means that
λb(a), ρb(a) ∈ C[a], and since C[a] ⊆ H, we conclude that H is normal.

A class of residuated lattices will be called Hamiltonian if all its members
are Hamiltonian.

Theorem 6.2. Let K be a class of e-cyclic residuated lattices that is closed
under direct products. Then K is Hamiltonian if and only if there exist
m,n ∈ N such that K satisfies the identities

(x ∧ e)m ≤ λy(x) and (x ∧ e)n ≤ ρy(x), (6.1)

or, equivalently, the identities

|x|m ≤ λy(x) and |x|n ≤ ρy(x). (6.2)

Proof. Let K be Hamiltonian and suppose to the contrary that K does not
satisfy the identity (x ∧ e)m ≤ λy(x) for any m ∈ N (the case when the
identity (x ∧ e)n ≤ ρy(x) fails for all n ∈ N is parallel). Then for every
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i ∈ N there exists Li ∈ K and ai, bi ∈ Li such that (ai ∧ e)i � λbi(ai). Let
L be the direct product

∏
i∈N Li. By the hypothesis, L belongs to K, so

it is Hamiltonian. However, if we take the sequences a = 〈a1, a2, . . .〉 and
b = 〈b1, b2, . . .〉, then (a ∧ e)m � λb(a), for every m ∈ N. Thus, in view of
Lemma 6.1, L cannot be Hamiltonian, since the convex subalgebra C[a ∧ e]
of C(L) is not normal.

The opposite direction is obvious: if K satisfies (6.1) for some m,n ∈ N,
then by Lemma 6.1, every L in K is Hamiltonian.

The same arguments show that K is Hamiltonian exactly if it fulfills (6.2)
for some m,n ∈ N.

Note that in Lemma 6.1, as well as in Theorem 6.2, the conjugations
λu, ρu can be replaced by λ∗u, ρ

∗
u.

It is known ([27], [34]) that there exists a largest Hamiltonian variety of
`-groups, viz., the variety of weakly Abelian `-groups, which is defined by
the identity (x ∧ e)2y ≤ yx. This identity bears striking similarity with the
identities y(x ∧ e)m ≤ xy and (x ∧ e)ny ≤ yx, which are equivalent versions
of the identities (6.1) above. The natural question arises whether arbitrary
values of m and n in the preceding equations can be replaced by m = n = 2,
or some other fixed value. The next result shows that this is not the case.
In particular, there is no largest Hamiltonian variety of e-cyclic residuated
lattices.

Theorem 6.3. Let Hm,n denote the Hamiltonian variety of e-cyclic resid-
uated lattices satisfying the identity (6.1). Then the map 〈m,n〉 7→ Hm,n

is an order-embedding of (N2,≤) into the lattice of Hamiltonian varieties of
e-cyclic residuated lattices. In particular, there is no largest Hamiltonian
variety of e-cyclic residuated lattices.

Proof. Let Hm,n be the Hamiltonian variety defined by (6.1). It is clear that
Hk,l ⊆ Hm,n whenever 〈k, l〉 ≤ 〈m,n〉 in (N2,≤). By the previous theorem,
every Hamiltonian variety is contained in Hm,n for some m,n ∈ N, thus a
maximal Hamiltonian variety would be of this form.

First, we construct an example of a Hamiltonian e-cyclic residuated lattice
(in fact, a linearly ordered pseudo-MV-algebra) that belongs to Hn,1 but not
to Hn−1,1 (for an arbitrary fixed n ∈ N, n ≥ 2).

Given n ∈ N, let H = {〈nx, x〉 : x ∈ R−} and let Bn be the residuated
chain (H ∪ R+, ·, \, /,∨,∧, 〈0, 0〉), where H and R+ are linearly ordered in
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the natural way and x ≤ 〈ny, y〉 for all x ∈ R+ and 〈ny, y〉 ∈ H, and where
the operation · is defined by

〈nx, x〉 · 〈ny, y〉 = 〈n(x+ y), x+ y〉 if 〈nx, x〉, 〈ny, y〉 ∈ H,
x · 〈ny, y〉 = 0 ∨ (x+ y) if x ∈ R+, 〈ny, y〉 ∈ H,
〈ny, y〉 · x = 0 ∨ (ny + x) if x ∈ R+, 〈ny, y〉 ∈ H,

x · y = 0 if x, y ∈ R+.

The residuals \ and / are then defined as follows:

〈nx, x〉\〈ny, y〉 = 〈0 ∧ n(y − x), 0 ∧ (y − x)〉 if 〈nx, x〉, 〈ny, y〉 ∈ H,
x\〈ny, y〉 = 〈0, 0〉 if x ∈ R+, 〈ny, y〉 ∈ H,
〈ny, y〉\x = x− ny if x ∈ R+, 〈ny, y〉 ∈ H,

x\y = 〈0 ∧ n(y − x), 0 ∧ (y − x)〉 if x, y ∈ R+,

〈ny, y〉/〈nx, x〉 = 〈0 ∧ n(y − x), 0 ∧ (y − x)〉 if 〈nx, x〉, 〈ny, y〉 ∈ H,
〈ny, y〉/x = 〈0, 0〉 if x ∈ R+, 〈ny, y〉 ∈ H,
x/〈ny, y〉 = x− y if x ∈ R+, 〈ny, y〉 ∈ H,

y/x = 〈0 ∧ (y − x), 0 ∧ 1
n
(y − x)〉 if x, y ∈ R+.

Of course, if two elements commute, then they satisfy both inequalities
of (6.1). For 〈nx, x〉 ∈ H and y ∈ R+ we have

y\(〈nx, x〉 · y) ≥ 〈n2x, nx〉 = 〈nx, x〉n

and
(y · 〈nx, x〉)/y ≥ 〈x, 1

n
x〉 ≥ 〈nx, x〉.

Hence Bn ∈ Hn,1. However, we also have

n\(〈−n,−1〉 · n) = 〈−n2,−n〉 = 〈−n,−1〉n,

and so Bn /∈ Hn−1,1.
Symmetrically, for any n ∈ N we can construct a Hamiltonian residuated

chain, say B∗n, that belongs to H1,n \ H1,n−1. Consequently, if we are given
〈k, l〉 < 〈m,n〉, then Bm ×B∗n ∈ Hm,n \ Hk,l. Thus Hk,l ⊂ Hm,n.
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The construction of the residuated lattice Bn in the proof above has been
inspired by the “kite” residuated lattice from [18], Section 3.

The class of all Hamiltonian `-groups is not a variety, but it is a torsion
class (see e.g. [2], [11]), that is, it is closed under convex `-subgroups, homo-
morphic images and joins of convex `-subgroups. We can analogously define
a class K of (e-cyclic) residuated lattices to be a torsion class if K is closed
under convex subalgebras, homomorphic images and joins of convex subal-
gebras in the following sense: if L is a residuated lattice (not necessarily in
K), then the join in C(L) of any family of convex subalgebras of L that all
belong to K again belongs to K.

Lemma 6.1 implies that the class HamRL of all Hamiltonian e-cyclic
residuated lattices is closed with respect to convex subalgebras and homo-
morphic images. However, the simple example below shows that, in contrast
to `-groups, HamRL is not closed with respect to joins of convex subalge-
bras, and hence it is not a torsion class.

Example 6.1 (Cf. [38], Example 2). Let L be the integral residuated lattice
given as follows:

· 0 a b c e
0 0 0 0 0 0
a 0 a 0 0 a
b 0 c b c b
c 0 c 0 0 c
e 0 a b c e

Obviously, {a, e} and {b, e} are (domains of) Hamiltonian convex subalgebras
of L, but they are not normal in L because λb(a) = b\ab = b\0 = 0 and
ρa(b) = ab/a = 0/a = 0. Thus L, which is the join of the two convex
subalgebras, itself is not Hamiltonian.

The preceding example also shows that semilinear e-cyclic residuated lat-
tices cannot be characterized by the identity x2 ∨ y2 ≈ (x ∨ y)2 which char-
acterizes semilinear (representable) `-groups (e.g. [16]). Indeed, L satisfies
this identity, though it is not semilinear because the polars a⊥ = {b, e} and
b⊥ = {a, e} are not normal.
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7. GMV-algebras

The results of the preceding sections demonstrate that lattices of convex
subalgebras of e-cyclic residuated lattices satisfying either prelinearity law
bear striking similarities with those of `-groups. The following question then
arises naturally.

Problem 7.1. Let L be an e-cyclic residuated lattice that satisfies either
prelinearity law. Does there exist an `-group G with the property that the
lattice C(G) of its convex `-subgroups is isomorphic to the lattice C(L) of
convex subalgebras of L?

The main result of this section, Theorem 7.2, asserts that the problem has
an affirmative answer when L is a GMV-algebra. Recall that a residuated
lattice L is called a GMV-algebra (generalized MV-algebra) ([15]) if it satisfies
the quasi-identities x ≤ y ⇒ x/(y\x) ≈ y ≈ (x/y)\x, or equivalently, the
identities x/((y\x) ∧ e) ≈ x ∨ y ≈ ((x/y) ∧ e)\x.

A larger class is that of GBL-algebras. A GBL-algebra (generalized BL-
algebra) ([15]) if it is divisible, i.e., L satisfies the quasi-identities x ≤ y ⇒
(x/y)y ≈ x ≈ y(y\x), or equivalently, the identities ((x/y) ∧ e)y ≈ x ∧ y ≈
y((y\x) ∧ e).

Every GMV-algebra is a GBL-algebra, and all GBL-algebras are e-cyclic
and have distributive lattice reducts. Bounded GMV-algebras are known
as pseudo-MV-algebras, and the duals of GBL-algebras can be found in the
literature under the name DR`-monoids (see, for example, [21], [22] or [24]).

The fundamental theorem about GBL-algebras ([15], Theorem 5.2) states
that every GBL-algebra L is isomorphic to a direct product of an `-group and
an integral GBL-algebra. Specifically, L is the direct sum of its subalgebras
G(L) and I(L), where the domain of the `-group G(L) is the set G(L) of
invertible elements of L, and the domain of the integral GBL-algebra I(L) is
the set I(L) = {a ∈ L : a\e = e = e/a} of integral elements of L. This result,
in the setting of DR`-monoids, was independently proved by T. Kovář in his
unpublished thesis “A general theory of dually residuated lattice ordered
monoids” (Palacký University, Olomouc, 1996).

If L is a GMV-algebra, then its integral part I(L) is of the form H−γ where
H− is the negative cone of an `-group and γ is a nucleus on it. That is, γ is a
closure operator satisfying γ(x)γ(y) ≤ γ(xy) for all x, y ∈ H−. The domain
of H−γ is the set H−γ = γ(H−) and the operations of H−γ are the restrictions to
H−γ of the corresponding operations of H−, except that multiplication on H−γ
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is defined by x ◦γ y = γ(xy). Moreover, H−γ is a lattice filter in H−, and the
`-group H can be constructed in such a way that H−γ generates its negative
cone as a monoid. This correspondence extends to a categorical equivalence
that generalizes that between MV-algebras and unital Abelian `-groups [33],
as well as the categorical equivalence between pseudo-MV-algebras and unital
`-groups [13]. For the details, see [15], Theorem 3.12.

Theorem 7.2. The lattice of (normal) convex subalgebras of any GMV-
algebra is isomorphic to the lattice of (normal) convex `-subgroups of some
`-group.

Proof. Let L be a GMV-algebra. By [15], L ∼= G × H−γ where G,H are
`-groups and γ is a nucleus on the negative cone of H such that 〈H−γ 〉 = H−.
It is easy to show that the lattice of (normal) convex subalgebras of the direct
product of two e-cyclic residuated lattices is isomorphic to the direct product
of their lattices of (normal) convex subalgebras. Hence, it will suffice to prove
that the lattice of (normal) convex subalgebras of H−γ is isomorphic to the
lattice of (normal) convex `-subgroups of H.

Let M = H−γ . First, let the map α : C(M)→ C(H) be defined by α(X) =
C[X]. Then M ∩ C[X] = X for every X ∈ C(M). Indeed, if y ∈ M ∩
C[X], then e ≥ y ≥ x1 . . . xn for some x1, . . . , xn ∈ X. Hence y = γ(y) ≥
γ(x1 . . . xn) = x1◦γ · · ·◦γ xn ∈ X, which yields y ∈ X. The converse inclusion
is trivial. Second, let β : C(H)→ C(M) be defined by β(X) = X ∩M . Then
β is correctly defined and for every X ∈ C(H) we have C[X ∩ M ] = X.
Indeed, if x ∈ X, then |x| = a1 . . . an for some a1, . . . , an ∈ M = H−γ , since
〈M〉 = H−. We have |x| ≤ ai ≤ e for each i, whence ai ∈ X ∩M for each i,
and so x ∈ C[X ∩M ]. Again, the converse inclusion is trivial.

Since both α and β are order-preserving, it follows that they are mutually
inverse isomorphisms between the lattices C(M) and C(H). Also, it is obvi-
ous that β(X) ∈ NC(M) whenever X ∈ NC(H). That X ∈ NC(M) implies
α(X) ∈ NC(H) follows from the fact that, by [15], the category of integral
GMV-algebras with homomorphisms is equivalent to the category whose ob-
jects are pairs 〈K, δ〉 where K is an `-group and δ is a nucleus on its negative
cone such that 〈K−δ 〉 = K−, and whose morphisms ϕ : 〈K, δ〉 → 〈K′, δ′〉
are homomorphisms ϕ : K → K′ satisfying ϕ�K− ◦ δ = δ′ ◦ ϕ�K− . Indeed,
given X ∈ NC(M), let 〈K, δ〉 be the object corresponding to the integral
GMV-algebra M/X, i.e., M/X = K−δ . Then the natural homomorphism
ν from M onto M/X can be lifted to a unique morphism ν̄ : 〈H, γ〉 →
〈K, δ〉. If x ∈ ker(ν̄), then also |x| ∈ ker(ν̄). Since 〈M〉 = H−, there exist
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a1, . . . , an ∈M such that |x| = a1 . . . an. But |x| ≤ ai ≤ e yields ai ∈ ker(ν̄),
so ν(ai) = [ai]X = [e]X = X and ai ∈ X, for each i. Thus x ∈ C[X].
Conversely, if x ∈ C[X], then |x| ≥ y1 . . . yn for some y1, . . . , yn ∈ X. Then
[e]X ≥ ν̄(|x|) ≥ ν(y1) . . . ν(yn) = [e]X , showing ν̄(|x|) = [e]X and x ∈ ker(ν̄).
Thus ker(ν̄) is just α(X) = C[X], hence α(X) ∈ NC(H).

There are two other cases for which Problem 7.1 can be answered in
the affirmative. The first is an instance of a lattice-theoretic result in [26].
As in Section 4, let A be an algebraic distributive lattice with bounds ⊥
and >, and let K(A) denote the set of compact elements of A. For any
a ∈ A, the pseudocomplement of a is denoted by ¬a. It is shown in [26]
that if A satisfies the equivalent properties (i) and (ii) below, then it is
isomorphic to the lattice of `-ideals (= normal convex `-subgroups) of some
hyper-Archimedean9 `-group:

(i) c ∨ ¬c = > for all c ∈ K(A);

(ii) K(A) is a sublattice of A and the meet-irreducible elements p ∈ A\{>}
form an antichain.

Now, by Theorem 3.8 and Lemma 4.1, and since a⊥ = C[a]⊥ for any a,
we get:

Theorem 7.3. Let L be an e-cyclic residuated lattice satisfying either pre-
linearity law. If C[a]∨ a⊥ = L for every a ∈ L, or equivalently, if the proper
prime convex subalgebras of L form an antichain with respect to set-inclusion,
then C(L) is isomorphic to the lattice of `-ideals of some (hyper-Archimedean)
`-group.

A second situation that provides an affirmative answer to Problem 7.1
is based on another lattice-theoretic result concerning finite-valued algebraic
distributive lattices. Retaining the notation of the preceding two paragraphs,
a value for c ∈ K(A) is a completely meet-irreducible element of A that is
maximal with respect to not exceeding c. A is called finite-valued if each
c ∈ K(A) has finitely many values. It is proved in [8], and exemplified
in [17], that any finite-valued algebraic distributive lattice whose compact

9An `-group is called hyper-Archimedean if all its homomorphic images are
Archimedean. In particular, such an `-group is Abelian.
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elements form a relatively normal lattice (refer to Section 4) is isomorphic to
the lattice of `-ideals of some Abelian `-group. The last result of this section
is an immediate consequence of these facts and Lemma 4.2 or Proposition
4.5.

Theorem 7.4. Let L be an e-cyclic residuated lattice satisfying either pre-
linearity law. If the lattice C(L) of convex subalgebras of L is finite-valued,
then C(L) is isomorphic to the lattice of `-ideals of some Abelian `-group.

8. Concluding remarks

The preceding sections have provided ample evidence of the key roles `-
groups and the concept of normality play in the study of e-cyclic residuated
lattices. Future developments require a more detailed study of the lattice
of convex subalgebras of such algebras. For example, an ongoing project by
three of the authors of this article (M. Botur, J. Kühr, and C. Tsinakis), is
devoted to the study of normal-valued e-cyclic residuated lattices. The term
normal-valued, borrowed from the theory of `-groups, refers to a residuated
lattice whose completely meet-irreducible convex subalgebras are normal in
their cover (in the lattice of convex subalgebras). One of the early results of
the project is that the class of all normal-valued e-cyclic residuated lattices
that satisfy one of the prelinearity laws is a variety. This generalizes the
corresponding result for `-groups ([40]).

Another direction of research, in which normality plays a role, is con-
nected with the concept of a state. A number of authors have tried to extend
the standard concepts of Riečan and Bosbach states for arbitrary bounded
residuated lattices. Since completely simple10 normal-valued e-cyclic residu-
ated lattices can be of arbitrarily large cardinality, it is unlikely that this line
of research will produce useful algebraic information. A promising approach
would be to introduce an alternative “ranking function” that would “mea-
sure” the relative position of the elements of a completely simple algebra.
Further, the time is ripe to study states for non-bounded residuated lattices,
in particular cancellative residuated lattices.

10We use the term completely simple for a residuated lattice whose only proper convex
subalgebra is {e}.
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