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Abstract. We establish the existence uncountably many atoms in the subvariety lattice

of the variety of involutive residuated lattices. The proof utilizes a construction used in

the proof of the corresponding result for residuated lattices and is based on the fact that

every residuated lattice with greatest element can be associated in a canonical way with

an involutive residuated lattice.
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1. Introduction

A binary operation · on a partially ordered set P = 〈P,≤〉 is said to be
residuated provided there exist binary operations \ and / on P such that for
all x, y, z ∈ P ,

x · y ≤ z iff x ≤ z/y iff y ≤ x\z.

We refer to the operations \ and / as the left residual and right residual of ·,
respectively. As usual, we write xy for x · y and adopt the convention that,
in the absence of parentheses, · is performed first, followed by \ and /, and
finally by ∨ and ∧.

An involutive residuated lattice is an algebra L = 〈L,∧,∨, ·, ′, e〉 such
that

(i) 〈L,∧,∨〉 is a lattice;

(ii) 〈L, ·, e〉 is a monoid;

(iii) the unary operation ′ is an involution of the lattice 〈L,∧,∨〉, that is,
a dual automorphism such that x′′ = x, for all x ∈ L; and

(iv) xy ≤ z ⇐⇒ y ≤ (z′x)′ ⇐⇒ x ≤ (yz′)′, for all x, y, z ∈ L.
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The term “involutive residuated lattice” reflects the fact that multiplica-
tion is residuated in any such algebra. In fact, it is immediate, from condition
(iv) above, that for all elements x, y ∈ L, x\y = (y′x)′ and y/x = (xy′)′.

Throughout this paper, the class of involutive residuated lattices will be
denoted by InRL. It is routine to verify that the equivalences of condition
(iv) can be described by finitely many equations and thus InRL is a finitely
based variety.

Involutive residuated lattices have received considerable attention both
from the logic and algebra communities. From a logical perspective, they
are the algebraic counterparts of the propositional non-commutative linear
logic without exponentials. From an algebraic perspective, they provide a
common framework within which a host of disparate structures – including
Boolean algebras, MV-algebras, lattice-ordered groups and relation algebras
– can be studied. The defining properties that describe the class InRL are
few and easy to grasp and the theory is sufficiently robust to yield significant
results. Recent publications focussing on residuated structures include [2],
[3], [6], [7], [11], [12], [13] and [15].

The primary purpose of this article is to establish the following result.

Theorem (see Theorem 3.12) The subvariety lattice, L(InRL), of InRL
contains uncountably many atoms.

2. Background

2.1. Residuated Lattices

We refer the reader to [4] and [9] for basic results in the theory of residuated
lattices. Here, we only review background material needed in the remainder
of the paper.

A residuated lattice is an algebra L = 〈L,∧,∨, ·, \, /, e〉 such that

(i) 〈L,∧,∨〉 is a lattice;

(ii) 〈L, ·, e〉 is a monoid; and

(iii) the operation “·” is a residuated map on 〈L,∧,∨〉 with residuals \ and
/.
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Throughout this paper, the class of residuated lattices will be denoted
by RL. It is easy to see that the equivalences defining residuation can be
captured by finitely many equations and thus RL is a finitely based variety.

2.2. Involutive Residuated Lattices

In what follows, we will mostly use a term-equivalent description of involu-
tive residuated lattices. An algebra L = 〈L,∧,∨, ·, \, /, e, d〉 is said to be a
dualizing residuated lattice provided it satisfies the following conditions:

(i) L = 〈L,∧,∨, ·, \, /〉 is a residuated lattice; and

(ii) d is a cyclic dualizing element. That is, for all x ∈ L, d/x = x\d (d is
cyclic) and d/(x\d) = (d/x)\d = x (d is dualizing).

Note that if Ld = 〈L,∧,∨, ·, \, /, e, d〉 is an dualizing residuated lattice
and we define x′ = d/x, for all x ∈ L, then L′ = 〈L,∧,∨, ·, ′, e〉 becomes an
involutive residuated lattice. On the other hand, if L′ = 〈L,∧,∨, ·, ′, e〉 is
an involutive residuated lattice, then the algebra Ld = 〈L,∧,∨, ·, \, /, e, d〉 –
defined by (i) d = e′; and (ii) x\z = (z′x)′, z/x = (xz′)′, for all x, z ∈ L – is
a dualizing residuated lattice.

2.3. Congruence Relations

RL is a congruence permutable and congruence distributive variety. Another
key property is that each residuated lattice L is e-regular, that is, each
congruence relation on L is determined by its identity block.

We discuss the latter property in more detail. Proofs of this and the
aforementioned facts are presented in [4] and [9]. For a ∈ L, we define the
notion of right and left conjugation by a as follows: λa(x) = [a\(xa)] ∧ e
and ρa(x) = [(ax)/a] ∧ e, respectively. These are unary operations on the
universe of L that correspond to the analogous concepts from group theory.
A subalgebra H of L is called normal if λa(x), ρa(x) ∈ H for all a ∈ L
and all x ∈ H. The algebraic closure families of congruence relations and
(order) convex normal subalgebras of a residuated lattice L will be denoted
by Con(L) and CN(L), respectively.

Proposition 2.1. ([4]) If θ is a congruence relation of a residuated lattice L,
then [e]θ – the θ-block of e – is a convex normal subalgebra (more precisely,
subuniverse) of L. Conversely, if H is a convex normal subalgebra of L, then
θH = {(x, y) : x\y ∧ y\x ∧ e ∈ H} is a congruence relation of L. Moreover,
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the maps H 7→ θH and θ 7→ [e]θ are mutually inverse isomorphisms between
Con(L) and CN(L).

It is clear that the congruence lattice of a dualizing residuated lattice, and
hence that of a involutive residuated lattice, is the congruence lattice of its
residuated lattice reduct. It follows that InRL is a congruence permutable,
congruence distributive and e-regular variety of algebras.

Involutive residuated lattices are referred to in [14] as ∗-autonomous
lattices. The latter term is reserved in F. Paoli’s monograph, [12], for in-
volutive dually residuated lattices. That is, a ∗-autonomous lattice is an
algebra L = 〈L,⊓,⊔, +, ′, 0〉 such that

(i) 〈L,+, 0〉 is an arbitrary monoid;

(ii) the unary operation ′ is an involution on the lattice 〈L,⊓,⊔〉; and

(iii) z ≤ x + y ⇐⇒ y(z′ + x)′ ≤ y ⇐⇒ (y + z′)′ ≤ x, for all x, y, z ∈ L.

It is clear that 〈L,∧,∨, ·, e,′ 〉 is an involutive residuated lattice if and only
if 〈L,⊓,⊔, +, 0,′ 〉 is a ∗-autonomous lattice, where ⊓ = ∨, ⊔ = ∧, + = · and
0 = e. In other words, each of these two structures is obtained from the other
by simply reversing the lattice order. Moreover, they are term equivalent
to the corresponding dualizing residuated lattice. These observations imply
that a number of results in [12] and [13] regarding congruences and ideals
of ∗-autonomous lattices can be obtained directly from the corresponding
results for residuated lattices in [8] and [4] .

3. Proof of the Main Result

3.1. The atomic structure of L(RL)

The starting point in the proof of the main result is a construction in [9],
which produces uncountably many strictly simple residuated chains CS (S ⊆
ω) that generate distinct atoms of L(RL). Recall that a non-trivial algebra
L is called strictly simple if it is simple and any proper subalgebras of it are
trivial.

For any subset S of ω, the universe of the algebra CS is the set

{⊥, a, b, e,⊤} ∪ {ci : i ∈ ω} ∪ {di : i ∈ ω}.

The linear order is given by

⊥ < a < b < c0 < c1 < c2 < · · · < · · · < d2 < d1 < d0 < e < ⊤.
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Multiplication is defined by ex = x = xe; ⊥x = ⊥ = x⊥; ax = ⊥ = xa,
⊤x = x = x⊤, if x 6= e; and bx = ⊥ = xb, if x 6= {e,⊤}. Furthermore, for
all i, j ∈ ω, cicj = ⊥, didj = b,

cidj =






⊥, if i < j
a, if i = j or (i = j + 1 and j ∈ S)
b, otherwise.

dicj =

{
⊥, if i ≥ j
b, otherwise.

The multiplication is illustrated by the table below. Depending on the
subset S, the elements si in the table are either equal to a (if i ∈ S) or b (if
i 6∈ S).

· ⊤ e d0 d1 d2 . . . . . . c2 c1 c0 b a ⊥

⊤ ⊤ ⊤ d0 d1 d2 . . . . . . c2 c1 c0 b a ⊥
e ⊤ e d0 d1 d2 . . . . . . c2 c1 c0 b a ⊥

d0 d0 d0 b b b . . . . . . b b ⊥ ⊥ ⊥ ⊥
d1 d1 d1 b b b . . . . . . b ⊥ ⊥ ⊥ ⊥ ⊥
d2 d2 d2 b b b . . . . . . ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
c2 c2 c2 b s1 a . . . . . . ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
c1 c1 c1 s0 a ⊥ . . . . . . ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
c0 c0 c0 a ⊥ ⊥ . . . . . . ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

b b b ⊥ ⊥ ⊥ . . . . . . ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a a a ⊥ ⊥ ⊥ . . . . . . ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . . . . ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Note that xyz = ⊥ whenever e,⊤ /∈ {x, y, z}, and hence multiplication
is associative. Further, the algebra is generated by ⊥ since ⊤ = ⊥\⊥,
d0 = ⊤\e, ci = di\⊥ and di+1 = ci\⊥. This easily implies that CS is strictly
simple. The reader may verify directly, or refer to the proof of Theorem 3.12
below for guidance, that each CS generates an atom in the subvariety lattice
and that for distinct subsets S1 and S2 of ω, one can find an equation that
holds in CS1

but not in CS2
, and vice versa. Thus, these algebras generate

distinct varieties.
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3.2. From modules to dualizing residuated lattices

In this subsection, we show that every residuated lattice with greatest el-
ement can be associated in a canonical way with a dualizing residuated
lattice. Our development owes considerable debt to a related result of P. H.
Chu regarding the embedding of an arbitrary quantale to a Girard quantale
(see the appendix of [1] and [14]). Our approach illuminates and extends
Chu’s construction by relating it to the concept of a module over a residu-
ated lattice. While we restrict our attention to the framework of residuated
lattices, the observant reader will undoubtedly note that the constructions
of this section have suitable extensions in the setting of semigroups.

Let L be a residuated lattice and let M = 〈M,∧,∨,⊥〉 be a lower
bounded lattice with least element ⊥. A right module action of L into M is
a map ∗ : M × L −→ M satisfying the following conditions for all x ∈ M
and a, b ∈ L.

1. x ∗ e = x;

2. x ∗ (ab) = (x ∗ a) ∗ b;

3. ∗ is a residuated map.

If the preceding conditions are satisfied, we will refer to M as a right

L-module. Left L-modules are defined analogously with the module action
on the left. In what follows, we will use the term L-bimodule for a left and
right L-module that satisfies the following associative law, for all x ∈ M and
a, b ∈ L.

(4) (a ∗ x) ∗ b = a ∗ (x ∗ b).

Note: For the sake of notational simplicity, the two actions and their resid-
uals will be denoted by the symbols ∗, \∗ and /∗ , respectively. This choices
will not create any confusion if the reader keeps in mind that, throughout
this section, the letters a, b, c will denote elements of L, while x, y, z will
denote elements of M . For example, a\∗x refers to the left action, as seen
by the equivalence, y ≤ a\∗x ⇐⇒ a ∗ y ≤ x. Likewise, x\∗a refers to the
right action.

Lemma 3.2. Let M be a right L-module. Then, for all a ∈ L and x, y ∈ M ,
the following properties hold:

⊥ ∗ a = ⊥

(x ∨ y) ∗ a = x ∗ a ∨ y ∗ a.
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The corresponding properties hold for left L-modules.

Proof. For each a ∈ L, the assignment x 7→ x ∗ a (x ∈ M) is a residuated
map on M. Thus, it preserves all existing joins, including binary joins and
the empty join, which is equal to ⊥.

Theorem 3.3. Every L-bimodule M gives rise to a residuated lattice
L ⋄ M = 〈L × M,∧,∨, ·, \, /, (e,⊥)〉 defined as follows:

(a, x) ∧ (b, y) = (a ∧ b, x ∧ y)

(a, x) ∨ (b, y) = (a ∨ b, x ∨ y)

(a, x)(b, y) = (ab, a ∗ y ∨ x ∗ b)

(a, x)\(b, y) = (a\b ∧ x\∗y, a\∗y)

(a, x)/(b, y) = (a/b ∧ x/∗y, x/∗b)

Proof. We need to show now that L ⋄ M is a monoid and that the multi-
plication is residuated with respect to the lattice structure. Invoking Lemma
3.2, we have for all a ∈ L and x ∈ M ,

(a, x)(e,⊥) = (ae, a ∗ ⊥ ∨ x ∗ e) = (a,⊥ ∨ x) = (a, x),

and similarly, (e,⊥)(a, x) = (a, x). Hence, (e,⊥) is a neutral element. To
show associativity, we use the second property of Lemma 3.2, the associa-
tivity of the monoid multiplication of L, and property (4) in the definition
of ∗. For all a, b, c ∈ L and x, y, z ∈ M ,

[(a, x)(b, y)] (c, z) = ((ab)c, (ab) ∗ z ∨ (a ∗ y ∨ x ∗ b) ∗ c)

= ((ab)c, a ∗ (b ∗ z) ∨ (a ∗ y) ∗ c ∨ (x ∗ b) ∗ c)

= (a(bc), a ∗ (b ∗ z) ∨ a ∗ (y ∗ c) ∨ x ∗ (bc))

= (a(bc), a ∗ (b ∗ z ∨ y ∗ c) ∨ x ∗ (bc))

= (a, x) [(b, y)(c, z)].

It remains to prove that the multiplication on L ⋄ M is residuated; equiva-
lently, we must prove that for all a, b, c ∈ L and x, y, z ∈ M ,

(a, x)(b, y) ≤ (c, z) iff (a, x) ≤ (c, z)/(b, y) iff (b, y) ≤ (c, z)\(a, x).

The first equivalence, which can also be expressed as

(ab, a ∗ y ∨ x ∗ b) ≤ (c, z) iff (a, x) ≤ (c/b ∧ z/∗y, z/∗b),
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follows from the following computation:

(a, x)(b, y) ≤ (c, z)

⇔ ab ≤ c and a ∗ y ∨ x ∗ b ≤ z

⇔ ab ≤ c and a ∗ y ≤ z and x ∗ b ≤ z

⇔ a ≤ c/b and a ≤ z/∗y and x ≤ z/∗b

⇔ a ≤ c/b ∧ z/∗y and x ≤ z/∗b.

The second equivalence,

(a, x)(b, y) ≤ (c, z) iff (b, y) ≤ (c, z)\(a, x),

is obtained in a similar fashion.

Let L be a residuated lattice with greatest element ⊤ and let M be
the order dual 〈L,∧,∨,⊤〉op of 〈L,∧,∨,⊤〉. M can be endowed with an
L-bimodule structure by defining the scalar multiplications by a ∗ x = x/a
and x ∗ a = a\x, for all a, x ∈ L. Note that, with respect to these scalar
multiplications, x\∗y = x/y, x/∗y = x\y, a\∗y = ya and x/∗b = bx. Thus
the next result follows directly from Theorem 3.3.

Corollary 3.4. Let L be a residuated lattice with greatest element ⊤.
Then L̂ = 〈L × L,∧,∨, ·, \, /, (e,⊤)〉 is a residuated lattice with respect to
the following operations:

(a, x) ∧ (b, y) = (a ∧ b, x ∨ y)

(a, x) ∨ (b, y) = (a ∨ b, x ∧ y)

(a, x)(b, y) = (ab, y/a ∧ b\x)

(a, x)\(b, y) = (a\b ∧ x/y, ya)

(a, x)/(b, y) = (a/b ∧ x\y, bx)

Conditions (1) and (2) of the following result were originally established
by P. H. Chu (see the appendix of [1] and [14]).

Corollary 3.5. Maintaining the notation established in Corollary 3.4, we
have the following:

1. The element D = (⊤, e) is a cyclic dualizing element of L̂. More
specifically, for all a, x ∈ L,

(a, x)\(⊤, e) = (x, a) = (⊤, e)/(a, x).
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2. L̃ = 〈L × L,∧,∨, ·, \, /, E, D〉 is a dualizing residuated lattice, where
E = (e,⊤), D = (⊤, e) and the other operations are defined as in
Corollary 3.4.

3. Let L̂⋆ = 〈L̂⋆,∨,∧, ·, \⋆, /⋆, E〉, where

L̂⋆ = L × {⊤}

B/⋆A = B/A ∧ (⊤, ⊤),

A\⋆B = A\B ∧ (⊤, ⊤).

Then the map ε : L → L̂⋆, defined by ε(a) = (a,⊤) for all a ∈ L,
is a residuated lattice isomorphism. Furthermore, it restricts to a
residuated lattice isomorphism from L− to L̂−.

Proof. An easy calculation establishes condition (1); thus, condition (2)
follows from condition (1) and Corollary 3.4. To establish condition (3),
note that, for all a, b ∈ L,

ε(a)ε(b) = (a,⊤)(b,⊤) = (ab,⊤/a ∧ b\⊤) = (ab,⊤),

and

ε(a)/⋆ε(b) = (a,⊤)/⋆(b,⊤) = (a/b ∧ ⊤\⊤, b⊤) ∧ (⊤,⊤) = (a/b,⊤).

Furthermore,

ε(a)\⋆ε(b) = (a,⊤)\⋆(b,⊤) = (a\b,⊤),

ε(a) ∧ ε(b) = (a,⊤) ∧ (b,⊤) = (a ∧ b,⊤),
ε(a) ∨ ε(b) = (a,⊤) ∨ (b,⊤) = (a ∨ b,⊤), and

ε(e) = (e,⊤) = E.

Hence, since ε is clearly a bijection, L̂⋆ is a residuated lattice and ε is a
residuated lattice isomorphism. Lastly, it is also clear that ε restricts to a
residuated lattice isomorphism from L− to L̂−.

Corollary 3.6. Every integral residuated lattice is isomorphic to the nega-
tive cone of a dualizing (equivalently, an involutive) residuated lattice. More
specifically, if L be an integral residuated lattice then the map ε : L → L̃−,
defined by ε(a) = (a, e) for all a ∈ L, is a residuated lattice isomorphism.

The lattice of subvarieties of RL will be denoted by L(RL) and that of
InRL by L(InRL).
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3.3. An uncountable family of involutive residuated lattices

The third step in the proof of the main result is to construct uncountably
many strictly simple involutive residuated lattices that will generate distinct
atoms in L(InRL). In what follows, it will be convenient to use the language
of dualizing residuated lattices.

Let S be a subset of ω, let CS be the strictly simple residuated chain
constructed in 3.1 and let C̃S = CS × CS be defined as in 3.2. Then, by
Corollary 3.5, the algebra C̃S is a dualizing residuated lattice, where, for
(a, x), (b, y) ∈ C̃S ,

(a, x) ∧ (b, y) = (a ∧ b, x ∨ y)

(a, x) ∨ (b, y) = (a ∨ b, x ∧ y)

(a, x)(b, y) = (ab, y/a ∧ b\x)

(a, x)\(b, y) = (a\b ∧ x/y, ya)

(a, x)/(b, y) = (a/b ∧ x\y, bx)

E = (e,⊤)

D = (⊤, e).

(See Figure 1.)

Let LS be the subalgebra of C̃S generated by E and D. Note, that LS

contains elements other than E and D, since D · D = (⊤, e/⊤ ∧ ⊤\e) =
(⊤, d0) ∈ LS .

Lemma 3.7.

{(x,⊤) : x ∈ CS\{⊤}} ⊆ LS and {(⊤, x) : x ∈ CS\{⊤}} ⊆ LS .

Furthermore, {(x,⊤) : x ∈ CS\{⊤}} is closed under multiplication.

Proof. First, let x, y ∈ CS\{⊤}. Then, xy ∈ CS\{⊤} and

(x,⊤) · (y,⊤) = (xy,⊤/x ∧ y\⊤) = (xy,⊤ ∧⊤) = (xy,⊤).

Hence, {(x,⊤) : x ∈ CS\{⊤}} is closed under multiplication.
We know that E, D ∈ LS . Therefore,

D · D = (⊤, e) · (⊤, e) = (⊤, e/⊤ ∧⊤\e) = (⊤, d0) ∈ LS and

D/(⊤, d0) = (d0,⊤) ∈ LS .
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(⊤,⊥)

(⊤, a)

(⊤, b)

(⊤, c0)

(⊤, c1)

(⊤, d1)

(⊤, d0)

(⊤, e) = D

(⊤,⊤)

(e,⊤) = E

(d0,⊤)

(d1,⊤)

(c1,⊤)

(c0,⊤)

(a,⊤)

(b,⊤)

(⊥,⊤)

Figure 1. C̃S
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Furthermore,

(d0,⊤)3 = (⊥,⊤) ∈ LS ,

D/(⊥,⊤) = (⊤,⊥) ∈ LS ,

(⊥,⊤)/(d0,⊤) = (⊥/d0 ∧ ⊤\⊤, d0 · ⊤) = (c0, d0) ∈ LS ,

(c0, d0) ∧ E = (c0,⊤) ∈ LS and

D/(c0,⊤) = (⊤, c0) ∈ LS .

Since ⊥/di = ci and ⊥/ci = di+1, for all i ∈ ω, we have

(⊥,⊤)/(di,⊤) ∧ E = (ci, di) ∧ E = (ci,⊤), and

(⊥,⊤)/(ci,⊤) ∧ E = (di+1, ci) ∧ E = (di+1,⊤).

Hence, (d0,⊤) ∈ LS and (c0,⊤) ∈ LS imply (di,⊤) ∈ LS and (ci,⊤) ∈
LS , for all i ∈ ω, and because of D ∈ LS , also (⊤, di) ∈ LS and (⊤, ci) ∈ LS ,
for all i ∈ ω.

Finally,

(d0,⊤) · (d0,⊤) = (b,⊤) ∈ LS ,

D/(b,⊤) = (⊤, b) ∈ LS ,

(c0,⊤) · (d0,⊤) = (a,⊤) ∈ LS , and

D/(a,⊤) = (⊤, a) ∈ LS .

Thus, {(x,⊤) : x ∈ CS\{⊤}} ⊆ LS and {(⊤, x) : x ∈ CS\{⊤}}
⊆ LS .

Note, that (⊥,⊤) is the bottom element and (⊤,⊥) is the top element
of LS .

The next result is not needed in the proof of the main theorem, but it is
of some independent interest.

Proposition 3.8. (⊤,⊤) 6∈ LS .

Proof. Let A, B ∈ C̃S with A = (a, x) and B = (b, y). We show that,
if A · B = (⊤,⊤), B/A = (⊤,⊤), A\B = (⊤,⊤), A ∨ B = (⊤,⊤) or
A ∧ B = (⊤,⊤), then either A = (⊤,⊤) or B = (⊤,⊤). This, of course,
implies that (⊤,⊤) 6∈ LS .

Let (⊤,⊤) = A · B = (a · b, y/a ∧ b\x). Then, without loss of generality
a = ⊤ and b ∈ {e,⊤}. Since e\y = ⊤ implies y = ⊤ and ⊤\x = ⊤ implies
x = ⊤, it follows that A = (⊤,⊤).
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Let (⊤,⊤) = B/A = (b/a∧y\x, a ·y). Then either a = ⊤ and y ∈ {e,⊤}
or else a ∈ {e,⊤} and y = ⊤. In the first case, y\x = ⊤ implies x = ⊤. In
the second case b/a = ⊤ implies b = ⊤. Hence, A = (⊤,⊤) or B = (⊤,⊤).
The case (⊤,⊤) = A\B is handled similarly.

Let (⊤,⊤) = A ∨ B = (a ∨ b, x ∧ y). Then x = y = ⊤. Furthermore,
a = ⊤ or b = ⊤, hence A = (⊤,⊤) or B = (⊤,⊤). The case (⊤,⊤) = A∧B
is handled similarly.

3.4. The atomic structure of L(InRL)

We conclude the proof by showing that the algebras LS generate distinct
atoms in the subvariety lattice. We start with two auxiliary results. The
first result was proved in [5] in the setting of residuated lattices. However,
the proof presented here is a routine adaptation of N. Galatos’s original
proof.

Proposition 3.9. (Compare with Theorem 3.1 in [5]). Let L be a strictly
simple algebra in a variety V. We assume that L has a residuated lattice
reduct and possesses a least element ⊥ (that is not necessarily among its
nullary operations). We assume further that there exists a unary term q⊥
such that q⊥(x) = ⊥ for all x ∈ L with x 6= e. Then the variety generated
by L is an atom in the subvariety lattice of V.

Proof. Note that L has a greatest element, namely ⊤ = ⊥\e. Let U be the
variety generated by L and let M be a non-trivial subdirectly irreducible al-
gebra in U . By Jónsson’s Lemma, [10], for congruence distributive varieties,
there exists an ultrapower B of L and a subalgebra C of B such that M is
the image of C under an epimorphism φ.

The term description of ⊥, along with the fact that L is strictly sim-
ple, implies that for each b ∈ L there exists a unary term qb satisfying
qb(x) = b, for all x ∈ L with x 6= e. Thus, the operation tables for L can be
described by universal formulas and hence they are preserved by any ultra-
power of L. More specifically, if f is a fundamental ν-ary operation of L and
c, c0, . . . , cν−1 ∈ L, then the the equality “c = f(c0, . . . , cν−1)” is captured
by the universal formula “(∀x)(x 6= e =⇒ qc(x) = f(qc0(x), . . . qcν−1

(x))”.
It follows that if x 6= e 6= y in B and c ∈ L, then qc(x) = qc(y). De-
note this common value by c′, for every c ∈ L. Now the universal formula
(∀x, y, z) (x, y 6= e → q⊥(x) = q⊥(y) ≤ z) holds in L, since ⊥ is the least
element. Thus, ⊥′ is the least element and ⊤′ = ⊥′\e′ the greatest element
of any non-trivial subalgebra of B . If D is the subalgebra of C generated
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by ⊥′, then the map c 7→ qc(⊥
′) (c ∈ L) is an isomorphism between L and

D. We claim that the subalgebra φ(D) of M is isomorphic to L. Indeed,
since D is strictly simple, the restriction of φ on D is either injective or else
collapses all elements of D to a single element. The latter case cannot occur,
since it would also send ⊤′ to the same element and force the image of C

under φ to be trivial, contrary to the assumption. Thus, every non-trivial
subdirectly irreducible algebra in U has a subalgebra isomorphic to L, and
hence U is an atom in the subvariety lattice.

The preceding result immediately yields he following:

Corollary 3.10. Let L be a strictly simple residuated lattice (respectively,
involutive residuated lattice) with least element ⊥. If there is a unary term
q such that q(x) = ⊥ for all x ∈ L with x 6= e, then the variety generated
by L is an atom in the subvariety lattice L(RL) (respectively, L(InRL)).

Lemma 3.11. For a residuated lattice or an involutive residuated lattice L

with least element ⊥, the following statements are equivalent:

1. There exists a unary term p such that p(x) = ⊥, for all x ∈ L with
x < e.

2. There exists a unary term p such that p(x ∧ e) ∧ p(e/x ∧ e) = ⊥, for
all x ∈ L with x 6= e.

3. There exists a unary term q such that q(x) = ⊥, for all x ∈ L with
x 6= e.

Further, if q is a term in the language of residuated lattices, then so is p.

Proof. The equivalence of (2) and (3) is clear. It is also clear that (2)
implies (1). To prove that (1) implies (2), consider x ∈ L. If x � e, then
x ∧ e < e, and hence, by (1), p(x ∧ e) = ⊥. It follows that p(x ∧ e) ∧ p(e/
x ∧ e) = ⊥. If, on the other hand, x > e, then e/x < e. Thus, invoking (1)
once again, we get successively p(e/x∧ e) = ⊥ and p(x∧ e)∧p(e/x∧ e) = ⊥.

Lastly, the preceding discussion makes clear that if q is a term in the
language of residuated lattices, then so is p.

We now have all the necessary information to complete the proof of the
main result.

Theorem 3.12. The subvariety lattice L(InRL) of InRL contains uncount-
ably many atoms.
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Proof. In light of Corollary 3.10, the theorem will be established if we
prove the following:

1. Each LS (S ⊆ ω) is a strictly simple algebra.

2. There exists a unary term q such that q(X) = (⊥,⊤), for all X ∈ LS

with X 6= E.

3. If S1 and S2 are distinct subsets of ω, then there exists an identity
that holds in LS1

but not LS2
, and vice versa.

We first prove (2). Let X ∈ LS with X < E. Then X = (x,⊤) with
x < e. In CS , we have x3 = ⊥, for all x 6∈ {e,⊤}. Hence, X3 = (x,⊤)3 =
(x3,⊤) = (⊥,⊤). Thus, (2) is a consequence of Lemma 3.11.

We next prove (1). Note that LS has no proper subalgebras since it
is generated by {E, D}. To show that it does not possess any non-trivial
proper congruences, let us recall that the congruences of LS are those of
the residuated lattice reduct, RS , of the corresponding dualizing residuated
lattice. By Proposition 2.1, the congruences of RS correspond to its convex
normal subalgebras. Let A be any nontrivial convex normal subalgebra of
RS . Then, there exists an element Y ∈ A with Y 6= E. In light of (2),
there exists a unary term q, in the language of residuated lattices, such that
q(X) = (⊥,⊤), for all X ∈ LS with X 6= e. In particular, q(Y ) = (⊥,⊤)
and hence (⊥,⊤) ∈ A. Furthermore, since (⊥,⊤)/(⊥,⊤) = (⊤,⊥), both
the bottom and top elements of RS are in A. By convexity, we can infer
that A = RS . We have established that RS has no nontrivial convex normal
subalgebras, and therefore LS is strictly simple.

We lastly prove (3). Let S1 and S2 be two distinct subsets of ω and let LS1

and LS2
be the corresponding involutive dualizing residuated lattices. By

Lemma 3.7, {(x,⊤) : x ∈ CS1
\{⊤}} ⊆ LS1

and {(x,⊤) : x ∈ CS2
\{⊤}} ⊆

LS2
. Furthermore these sets are closed under multiplication. Without loss

of generality, we may assume that there exists i ∈ ω such that i ∈ S1 and
i 6∈ S2. Then,

(ci+1,⊤) · (di,⊤) = (a,⊤) in LS1
, but

(ci+1,⊤) · (di,⊤) = (b,⊤) in LS2
.

Since LS1
and LS2

are generated by their term defined bottom elements,
one can find an equation that holds in one of the algebras but not in the
other. In more detail, using the notation of Proposition 3.9 and starting with
the element a = (⊥,⊤), the equations in question are q(ci+1,⊤) ·q(di,⊤) ≈ q(a,⊤)

and q(ci+1,⊤) · q(di,⊤) ≈ q(b,⊤).
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It is worth mentioning that [6] presents two constructions for embedding
a residuated lattice into an involutive residuated lattice. However, they
cannot be used for the purposes of this paper. Indeed, even if one starts
with a strictly simple residuated lattice L, neither the constructed involutive
residuated lattice L∗ is simple, nor there exists a clear association of L∗ with
a strictly simple involutive residuated lattice.

For each S ⊆ ω, let US denote the subvariety of RL generated by CS

and let VS denote the subvariety of InRL generated by LS . It was shown
in [9] that each variety US satisfies the identity x3 ≈ x4. The next result
shows that the varieties VS satisfy an analogous identity.

Proposition 3.13. Each variety VS satisfies the identity x4 ≈ x5.

Proof. Recall that x3 = ⊥, for all x ∈ CS with x < e. Furthermore, we
have (x, y)2 = (x2, y/x ∧ x\y) and

(x, y)4 = (x4, (y/x ∧ x\y)/x2 ∧ x2\(y/x ∧ x\y)).

Because of ⊤ · x = x · ⊤ = x, for all x ∈ CS with x 6= e, it follows that

x 6= e and x ≤ y imply y/x ∧ x\y = ⊤ (i)

and therefore,

x < e and x2 ≤ y/x ∧ x\y imply (x, y)4 = (x, y)5, (ii)

where (x, y)4 = (⊥,⊤).

x = ⊤: If x = ⊤ and y 6= e we have (⊤, y)2 = (⊤, y). Furthermore, if
x = ⊤ and y = e, it follows that (⊤, e)4 = (⊤, d0)

2 = (⊤, d0) = (⊤, d0) ·
(⊤, e) = (⊤, e)5.

x = e: If x = e, then (e, y)2 = (e2, y/e ∧ e\y) = (e, y), for all y ∈ CS .

x < e: If x < e, for each y ∈ CS , it will be shown in the following, that
x2 ≤ y/x ∧ x\y which implies, by (ii), (x, y)4 = (x, y)5.

If x < e and x ≤ y, then, by (i), y/x ∧ x\y = ⊤, hence, x2 ≤ y/x ∧ x\y.

If x = di, with i ∈ ω, and x > y, it follows that x2 = b. Furthermore,
since b · di = di · b = ⊥, for all i ∈ ω, we have b ≤ y/di ∧ di\y, for all y ∈ CS

and i ∈ ω. Hence, x2 ≤ y/x ∧ x\y.

If x < di, for all i ∈ ω, then x2 = ⊥, thus, x2 ≤ y/x ∧ x\y, for all
y ∈ CS .
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We remark that none of the varieties VS satisfies the identity x3 ≈ x4.
Indeed, by Lemma 3.7, for all S ⊆ ω, (⊥,⊤), (a,⊤) ∈ LS . Note further that
(⊥,⊤)/(a,⊤) = (⊥\a ∧ ⊤/⊤, a · ⊤) = (d0, a), thus (d0, a) ∈ LS . Hence,
(d0, a)3 = (⊥, d0), but (d0, a)4 = (⊥,⊤).

A particularly significant subvariety of RL is the variety RepRL of rep-
resentable residuated lattices. This is simply the subvariety of RL generated
by all totally ordered residuated lattices. Refer to [4] or [9] for an equational
description of this variety. Correspondingly, we have the variety, RepInRL,
of representable involutive residuated lattices. It is generated by all totally
ordered involutive residuated lattices. Note that each variety US is a subva-
riety of RepRL. On the other hand, none of the varieties VS is contained in
RepInRL, since their generators, LS , are simple – and hence, subdirectly
irreducible – but not totally ordered. Thus, the question remains whether
there exist uncountably many atoms in the subvariety lattice of RepInRL.
We remark, in this connection, that the variety of Boolean algebras is the
only minimal variety below the variety of integral involutive residuated lat-
tices. Recall that an involutive residuated lattice is integral, if it satisfies the
law x ∧ e ≈ e.
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