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Abstract

A commutative residuated lattice, is an ordered algebraic struc-
tureL = (L, -, A\, V, —,e), where (L, -, €) is a commutative monoid,
(L,A,V) is a lattice, and the operation — satisfies the equiva-
lences

a-b<c <= a<b—oc <<= b<c—a

for a,b,c € L. The class of all commutative residuated lattices,
denoted by CRL, is a finitely based variety of algebras. Histor-
ically speaking, our study draws primary inspiration from the
work of M. Ward and R. P. Dilworth appearing in a series of
important papers [9] [10], [19], [20], [21] and [22]. In the en-
suing decades special examples of commutative, residuated lat-
tices have received considerable attention, but we believe that
this is the first time that a comprehensive theory on the struc-
ture of residuated lattices has been presented from the viewpoint
of universal algebra. In particular, we show that CRL is an "ideal
variety” in the sense that its congruences correspond to order-
convex subalgebras. As a consequence of the general theory, we
present an equational basis for the subvariety CRL® generated by
all commutative, residuated chains. We conclude the paper by
proving that the congruence lattice of each member of CRL® is an
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algebraic, distributive lattice whose meet-prime elements form
a root-system (dual tree). This result, together with the main
results in [12] and [18], will be used in a future publication to an-
alyze the structure of finite members of CRL. A comprehensive
study of, not necessarily commutative, residuated lattices will be
presented in [4].

1 Preliminaries.

We begin with some notation. Let (P, <) be a poset. We will use T and L
to denote the greatest and least elements, respectively, of P when such exist.
Let X C P. We will let T X denote the upperset generated by X in P; that
is

1 X={peP:z<p JxeX}

If X = {z} is a singleton, we will use the symbol T = in place of the more
cumbersome | {z}. Uppersets of the form T = will be called principal. The
lowerset, | X, generated by X is defined dually.

A commutative binary operation - : P x P — P on a poset (P, <) is said
to be residuated provided there exists a binary operation —: P x P — P
such that

a-b<c <= b<a—c <= a<b-—ec

In this event, we will say that (P, <) is a residuated poset under the operation
-, and refer to the operation — as a residual of -. Note that for all a,b € P,

a—b=max {pe P:a-p<b}.

The definition above serves as a natural extension of the notion of an
adjoint pair in the sense that, for all @ € P, the assignment x — a — x
serves as the right adjoint for the map y — a-y. For an extensive discussion
of adjunctions, see Gierz et al. [11].

As a consequence of the general theory of adjunctions, the binary op-
eration - preserves all existing joins in both coordinates, and the residual
preserves all existing meets in its second coordinate. Residuals of the oper-
ation - enjoy an additional property which will often prove useful. For any
fixed a € P, observe that



y<zr—a <<= zv-y<a << r<y—a.

Hence, the operation — is dually self adjoint. Therefore, it is anti-isotone in
its first component, converting all existing joins to meets (in P).

By a commutative residuated lattice, we shall mean an ordered algebraic
structure of the form L = (L,-, A, V, —, e), where

e (L, e) is a commutative monoid,
o (L,A,V) is a lattice, and

e the operation — serves as the residual for the monoid multiplication
under the lattice ordering.

We denote the class of all such objects by CRL.

We wish to advise the reader that we do not require the monoid identity to
be the greatest element of the lattice. This constitutes a significant departure
from the aforementioned work of Ward and Dilworth. See also Blyth [6] and
McCarthy [16].

As an example, note that every Brouwerian algebra is a member of the
class CRL where — in this case denotes the classical Brouwerian implication.
It is worth noting that we are lax here with regard to the similarity type.
Thus, we view a Brouwerian algebra as a member of the subvariety of CRL
satisfying the additional identity -y = z Ay. Likewise, every abelian lattice-
ordered group (¢-group) may be viewed as a member of the subvariety of CRL

satisfying the additional identity = - (a — €) = e. In this case, r — e = 27,

and, more generally, + — y = z~!.y. (For information on Brouwerian
algebras, see Balbes and Dwinger [2] and Kohler [14]; for information on
(-groups, see Anderson and Feil [1].)

It is a routine matter to verify that a binary operation — is the residual
of a commutative, associative operation - on a lattice (L, A, V) if and only if

the following identities hold:
lL.x-(yvVz)=(z-y)V(r-=z)
2. 2= (yNz)=(r =y A(x— 2)
3.x-(x —=y)Vy=y

4doox—(r-y)ANy=y



Thus, the class CRL is a variety.

We have mentioned two important subvarieties of CRL, namely the sub-
variety of Brouwerian algebras and the subvariety of abelian /-groups. Since
the Brouwerian implication residuates the lattice meet operation, it is clear
that any Brouwerian algebra is distributive. Likewise, it is well-known that
the lattice reduct of any ¢-group is also distributive (see for example Ander-
son and Feil [1]). It is certainly not necessary, however, for the lattice reduct
of a residuated lattice to be distributive. There are a number of ways to
construct nondistributive residuated lattices; one of the simplest ways was
devised by Peter Jipsen and is presented below.

Example 1.1

Let (L,A,V, L, T) be any bounded lattice containing an atom e. Define
a binary operation - on L as follows.

T ifx,yg{Ll, e}
r ify=e
Ty = .
y ifr=e
1L ifr=Llory=1
It is easy to verify that the operation - is a multiplication on L with
multiplicative identity e . It is also easy to verify that

T ife=Lory=T
r—y=<e fl<axly<T
1L ifxLy

serves as the residual of the multiplication.

Among other things, the construction in Example 1.1 can be used to
residuate any finite lattice, producing a distinct residutated multiplication
for each atom.

We conclude this section by presenting a result that collects some basic
properties of the arrow operation. Its simple proof is left to he reader.

Lemma 1.2 Let I be a member of the variety CRLC. For all a,b,c,d € L, the
following statements are true:

l.e—a=a,ande<a—a



2.a-(a—b)<b
3.a—(b—c)=(a-b)—c
4. (a—b) — (¢ —d)=c—|[(a—b) —d]

5. (a—e)-(b—e)<(a-b) —e.

2 Convex Subalgebras

The primary aim of this section is to establish that the congruence lattice
of any member of CRL is isomorphic to the lattice of its convex subalge-
bras. In addition, we provide a canonical description of the elements of the
convex subalgebra generated by an arbitrary subset. We begin with some
terminology.

We will say that a subset C' of a poset (P, <) is order-convex (or simply
convex) in P if, whenever a,b € C, then Tan | b C C.

As usual, we will refer to a subset H of a commutative, residuated lattice IL
as being a subalgebra of I provided H is closed with respect to the operations
defined on L. We will let Sube(L) denote the set of all convex subalgebras
of I, partially ordered by set-inclusion. It is easy to see that the intersection
of any family of convex subalgebras of IL is again a convex subalgebra of L;
hence, Subc(IL) is a complete lattice in which meet is set-intersection.

In the work to follow, we will let Con(IL) denote the lattice of congruence
relations for a member L of the variety CRL. Since the congruence lattice
of any lattice, in particular that of the lattice-reduct of L, is an algebraic
distributive lattice, the same is true for Con(LL). For all § € Con(L), set

Hy={a€L: (ae) € b}.

For any convex subalgebra H of L, set

0y = {(a,b)e L x L:a-h<bandb-h<a3dheH}
= {(a,0)e L x L:(a—b)Ne€ Hand (b—a)Nec H}



The first characterization of 6y is the same as the one introduced by Mc-
Carthy in [16] for lattice-ordered semigroups. We shall use this characteriza-
tion of Ay and leave it to the reader to prove that the second characterization
is equivalent. Our next goal will be to prove that the assignments 6 — Hy
and H +— 6y establish an order isomorphism between Con(IL) and Sub¢(IL).

Lemma 2.1. Let L be a member of CRC. If 6 € Con(LL), then Hy is a convex
subalgebra of L.

Proof. We first prove convexity. Suppose that a,b € Hy, and suppose x € L
is such that a <z <b. We must prove that (z,e) € 0.

Since a < x, we know aVz = x. Thus, since (a,€), (z,z) € 0, (x,zVe) € 6.
Since # < b, v = & Ab. Thus, since (b, e) € 0, we see that (z,(xVe)Ae) € 6.
However, since e = e A (e V z), we are done.

We now prove that Hy is a subalgebra of L. To this end, let a,b € Hy.
Since (a,e), (b,e) € 0, it follows at once that (aV b,e), (a Ab,e), and (a-b,e)
are all members of §. Furthermore, since e — ¢ = e by Lemma 1.2 (1), we
see that (a — b,e) € 0 as well.

O

Lemma 2.2. Let IL be a member of CRC. If H is a convex subalgebra of L,
then Oy is a congruence relation on L.

Proof. It is routine to prove that 6y is an equivalence relation. To establish
the substitution properties, let (a,b), (¢,d) € 0. By definition, there exist
h,j7 € H such that

ea-h<bandb-h<a,

e c-j<dandd-h<ec

Clearly, we may replace h and j by k = h A j. Since the multiplication is
isotone and preserves joins, it is easy to see that

e (a-c)-k*<b-dand (b-d)-k* <a-cand
e (aVe)-k<bVvdand (bVvd)-k<aVec.

Consequently, (a-c,b-d),(aVc,bVd) € 0y.
To see that (aAc,bAd) € Oy, first observe that a < k — band ¢ < k — d.
Hence,



ahNc<(k—=0AN(k—d=k— (bAd).
Thus, we have (a Ac¢) -k < (bAd). The proof that (bAd) -k < (aAc) is
similar.
It remains to prove that (a — ¢,b — d) € 0y. Since b- k < a, we know
by Lemma 1.2 (2) that
(b-k)-(a—c)<a-(a—c) <ec

Therefore, (b- k%) - (a — ¢) < k- ¢ < d, which implies

E*-(a—c)<b—d.

The other inequality follows in like manner.
O

Theorem 2.3. If L is a member of CRL, then Con(LL) is order isomorphic
to Subc(LL). The isomorphism is established via the assignments 6 — Hy and

Proof. It is easy to see that the assignments are both isotone. It will
therefore suffice to prove that 0y, = 0 and Hy,, = H.
Let 6 € Con(L) and observe that

O, ={(z,y) e L x L:x-h<yandy-h<z,3he Hy}

If (a,b) € 0, then ((a — b) Ae,e) € 8 and ((b — a) Ae,e) € by Lemma 1.2
(1). Thus, if we let

h=(a—=bA(b—a)Ae,
then it is clear that h € Hy. Furthermore, we see by Lemma 1.2 (2) that
e a-h<a-(a—b)<b, and
e b-h<b-(b—a)<a.

Hence, we see that (a,b) € 0p,; it follows that 6 C 6p,. On the other hand,
suppose that (z,y) € 6pg,. Then there exist h € L such that

o (h,e) €6, and



e r-h<yandy-h<ux.

Consequently, we know ([z - h] Vy,zVy) € 6 and ([y - h] Vz,2Vy) € 6.
Transitivity and symmetry therefore imply

([y-h]Va,lz-hVy) €o.

Since x = [z - h]Vx and y = [y - h] Vy, we see that (x,y) € 6. It follows that
On, C 0.
Now, let H € Sub¢(L) and observe that

Hy, ={a€L:(ae) €y}

Suppose a € H. Then h = a A (a — e) € H; hence, we know e-h < e-a < a.
By Lemma 1.2 (2), we also know a-h < a-(a — e) < a. Hence, (a,e) € 0y;
and we see that H C Hy,,. On the other hand, suppose that a € Hy,,. Then
(a,e) € Oy, which implies that there exists h € H such that

a-h<eande-h<a.

It follows that h < a < h — e; hence, a € H by convexity.
O

We now turn attention to obtaining a simple internal characterization of
convex subalgebras. Let L be a member of CRL and let H be any subalgebra
of L. Borrowing terminology from lattice-ordered groups, we will call the set
| e H the negative cone of H. We will denote the negative cone of H by
H~. In symbols, we have

H ={he H:h<e}

Corollary 2.4. If L is a member of CRL, then every convexr subalgebra of
L is completely determined by its negative cone. More specifically, if H is a
convex subalgebra of I, then

H={zelL:h<zx<h—e,3he H }.

Proof. Let H be a convex subalgebra of L. Theorem 2.3 implies



H=Hy, = {z€L:(zv,e)cby}
{rel:z-h<eandh<z,3heH}
{relL:h<zx<h—e,3heH}
{reL:hhe<x<(hNe)—e,IhecH}
= {zel:N<z<h-—-e,3heH }

O

Note that the negative cone of any residuated lattice obtained by Example
1.1 contains only two elements. Hence by Corollary 2.4, any such algebra is
simple in the sense that its congruence lattice contains exactly two members.

Let I be a member of CRL. In what follows, we will adopt a standard
notation from semigroups. For all n < w, and for all a € L, let

1. a® = e, and

2. a"=a-a" forall 0 <n < w.

The following observations will be useful when dealing with members of
the negative cone.

Lemma 2.5. Let L be a member of CRLC. If a,b,c are members of the
negative cone of I, then the following are true:

1.a<a—e,
2. (avb)-(ave)<aV(b-c),
3. If n <w, then (xVy)" <z Vy",
4. If m,n < w, then (x Vy)™ < z™Vy".
Proof. Claims (1) and (2) are obvious; we prove Claim (3) by means of

induction. Since a < e, it is clear that Claim (3) holds when n = 0. Assuming
the claim holds for any n < w, observe that



(aVvDd)"™ = (aVvb) (aVb)"
(@Vb)-(aVid")
a®V(a-b")V (b-a)Vbott
aV ot

IN

IN

Claim (4) follows from Claim (3). Indeed, we have

(@Vy)™ = ((zVy")" < (zVy")" <y"Var
O

For any L in CRL and any S C L, we will let C[S] denote the smallest
convex subalgebra of IL containing S. As is customary, we will call C[S] the
convex subalgebra generated by S and will let Cla] = C[{a}]. We will call
C'la] the principal convex subalgebra of L. generated by the singleton {a} and
usually refer to it as being generated by the element a. We will say that a
convex subalgebra of L is finitely generated provided it is generated by some
finite subset of L.

Lemma 2.6 If L is a member of CRC and S C L, then C[S] = C[S'], where
S'={eNaAN(a—ce):a€ S} In particular, every conver subalgebra of L
15 generated by a subset of its negative cone.

Proof. Let a € L and b = eAa A (a — e). It will suffice to prove that
Cla] = C[b]. First, note that b is clearly a member of the negative cone of
C'la); hence, C[b] C C[a]. Now, by Lemma 1.2 (2), we know

a-b<a-(a—e)<e.

Since b < a by construction, we see that b < a < b — e; hence, a € C[b] by
convexity.
O

Let I be a member of CRL and let S C L. In what follows, we will let
(S) denote the submonoid of (L, -, e) generated by S.

Lemma 2.7. Let L be a member of CRLC. If S is a subset of the negative
cone of I, then
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ClS]={zeL:h<zx<h—e,3he (S}
Proof. If S C L, then clearly (S) C L~. Thus, if we let

K={xeL:h<z<h—e,dhe(S)},
then it is clear that S C K C C[S]. It will therefore suffice to show that K is
a convex subalgebra of L. For all a,b € K, note that there exist hg, hy € (S)
such that

h, <a<h,—eand hy <b< h, — e.
Clearly, we may replace both h, and hy by h = h, - hy,. With this in mind, it
is easy to see that K is convex. Indeed, if a < x < b, then h<a<x <b<
h — e; and we see that z € K.
Likewise it is easy to verify that
h<aNnb<aVb<h-—e,

so K is closed with regard to meets and joins. Now, by Lemma 1.2 (5), we
see at once that

h*<a-b<(h—e) (h—e)<h®—e.

Hence, K is also closed under multiplication. To see that K is closed under
the arrow, first observe that a - h < e and h < b together imply that h? <
a — b. On the other hand, A < a implies

a—b<h—b<h—(h—e)=h*—e

by Lemma 1.2 (3).
O

Corollary 2.8 Let I be a member of CRL. If a is a member of the negative
cone of L, then

Cla]={zeL:a"<z<d"—e,In<w}

Our next goal will be to prove that every finitely generated convex sub-
algebra of a commutative, residuated lattice is principal.
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Theorem 2.9. If L is a member of CRL, then Subc(LL) is an algebraic, dis-
tributive lattice whose compact elements are the principal conver subalgebras
of L. Moreover, the compact elements of Subc(LL) form a sublattice, with
joins and meets given by the following formulas for all a,b € L™:

Cla] N C[b] = Cla V b] and Cla] vV C[b] = Cla A D).

Proof. We just need to establish the two equalities in the statement of the
theorem. Let a,b € L~. Note that the inequalities a,b < a Vb < e imply
that a Vb € Cla] N C[b] and hence Cla V b] C Cla] N C[b]. To obtain the
reverse inclusion, suppose z € Cfa] N C[b]. Then, by Corollary 2.8, there
exist m,n < w such

e 0" <x<b"— e, and

e )" <z <h —e.
Thus, by Lemma 2.5 (4), (a Vb)™ < a™ Vv b" < x; and, likewise,

r<(a"—=e)ANb" —e)<(aVD™ —e.
Hence, z € Cla V b]. We have shown that C[a] N C[b] = Cla V b].
Evidently, a A b € Cla] V C[b] = C[{a,b}] Hence, Cla Ab] C Cla] Vv C[b].
To obtain the reverse inclusion, observe that, by Lemma 2.5 (1), we know
a<a—e<(aNb) —e.

Thus, since a Ab < a, we see that a € Cla A b|. In like manner, we can prove
that b € Cla A b]. Tt follows that Cla] vV C[b] C Cla A b).
O

3 The Subvariety of CRL Generated by Resid-
uated Chains

As mentioned at the beginning of Section 2, let CRL® denote the subvariety
of CRL generated by residuated chains. Consider the following identities:

Ci e<(a—b)V(b—a)
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Cy eN(aVb)=(eNa)V(eND)

Theorem 3.1 The two identities above, together with those defining CRL,
form an equational basis for CRLC.

Proof. Let V denote the subvariety of CRL determined by identities C and
C5. Since any commutative, residuated chain clearly satisfies these identities,
it follows that every member of CRL® is a member of V. To prove the converse,
it will suffice to prove that every subdirectly irreducible member of V is totally
ordered. We prove the contrapositive. Suppose that L satisfies identities C}
and C5 but is not totally ordered. Let a and b be incomparable elements in
L. Tt follows that e £ a — band e £ b — a.

Let u=eA (a — b) and let v = e A (b — a). By choice of a and b, we
infer that e # u and e # v. By identity Co, u Vv =eA[(a — b) V (b — a)l;
hence, by identity C;, u Vv = e. However, by Theorem 2.9, this implies
Clu] N Clv] = {e}. It follows that Con(L) cannot have a monolith. Thus L
cannot be subdirectly irreducible.

O

The preceding result generalizes Theorem 4.4 in Cornish [8]. The class
CRL® properly includes the subvarieties of generalized Boolean algebras, rela-
tive Stone algebras and commutative /-groups. Interesting examples of mem-
bers of CRLC are all ideal lattices of Dedekind domains (see Larsen et al. [15],
p. 137), which served as the initial motivation for identities C as well as
identities £, and E5 below.

Identities C'; and C5 must both be satisfied to guarantee that subdirectly
irreducible members of CRL are totally ordered. To illustrate this, we consider
two simple examples.

Example 3.2 Let M3 ={L1,a,b,e, T} denote the nondistributive diamond.
The sublattice B = M3—{e} is a Boolean lattice (and therefore a Brouwerian
lattice). Define a binary operation - on Mj as follows:

rANy ifz,yeB
-y = .
x if y=e.

This operation clearly defines an associative multiplication on M3, with mul-
tiplicative identity e,which is residuated. If we let £ denote the complement
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of an element € B, then we can describe the residual for the multiplication
as follows:

»*Vy ifz,yeB
T =y = za° ifre Bandy=e

Y ifr=e

Now, the algebra Mg = (M3, -, A, V, <, e) is simple and therefore subdirectly
irreducible. Furthermore, it is easy to see that M satisfies identity C} but
not identity Cj.

Example 3.3 On the other hand, consider the nonmodular pentagon N5 =
{L,a,b,e, T}, where L < a < b < T. The residuated lattice N5 obtained
as in Example 1.1 is simple and therefore subdirectly irreducible. Moreover,
it easily seen to satisfy identity Cy (even though its lattice reduct is not
distributive) but not identity C4.

Consider the following identities:
Ey (anb) —c=(a—c)V(b—c)

Eya— (bAc)=(a—b)V(a—c).

It is not difficult to verify that any member of CRL satisfying either £
or Fs also satisfies (. Conversely, in view of Theorem 3.1, any lattice that
satisfies ('} and (5 also satisfies F'; and FEs, since the last two identities hold
in residuated chains. In Theorem 3.4 below, we provide an elementary proof
of this fact that does not rely on the Axiom of Choice. It is a slight variation
of the proof given by Ward and Dilworth in [22] in the special case when e
is the greatest element of the lattice.

Theorem 3.4. Coupled with the identities defining CRL, both {Cs, E1} and
{Cs, Es} form alternative equational bases for CRLE.

Proof. We shall establish the equivalence of identities £, and Es when C is
satisfied without appealing to Theorem 3.1. As mentioned above, identities
E; and E, each imply identity C;. We first prove that identities C; and
Cs together imply identity E;. Since the arrow is anti-isotone in its first
component, it follows that
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(bAc) —a>(b—a)V(c—a).

To obtain the reverse inequality, it will suffice to prove that

e<[(bAc)—a]l—[(b—a)V(c—a)l

Let w = (b — a) V (¢ — a). Since the arrow is isotone in its second
component, Lemma 1.2 (4) implies that

(bAc) —u > [(bAc)—al— (b—a)
b— ([(bAc) = a] — a)
b— (bAc),

Vv

where the last inequality follows from Lemma 1.2 (2). Likewise,

(bAc)—u > [(bAc)—a]l— (c—a)
= c— ([(bAc) = a] —a)

> c— (bAc).

Now, since the arrow preserves meets in its second component, it follows that

b—(bAc)=b—=bANDb—c>eN(b—c),

by Lemma 1.2 (1). Likewise, we know ¢ — (bA¢) > e A (¢ — b). Therefore,
it follows that

(bAc)—u > [eN(b—c)]V]eA (c— D)
= eN[b—c)V(c—Db)]>e.

Note that we used identity Cs for the last equality above, and we used identity
(' to obtain the last inequality.

We now prove that identities C'; and Cy together imply identity Fs,. Since
the arrow operation is isotone in its second component, we know at once that

(a—b)V(a—c)<a— (bVec).
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To establish the reverse inequality, we will prove that

[a— (bVe)]—[(a—b)V(a—c)>e.

Let u = (a — b)V(a — ¢). Since the arrow is isotone in its second component,
we have by Lemma 1.2 (4), (3), and (2) that

[a— (bVe)]—u > [a— (bVc)]— (a—b)
a—[{a—(bVe)} =]
[a-(a—(bVe)]—0b
(bVe)—b.

v

Likewise, we have [a — (bV ¢) — u > (bV ¢) — ¢. Consequently,

[a— (bVe)—u > [(bVe)—bV[bVec)—
= [0=0)A(c=b)]Vc—c)A(b—0)
> leN(c—c)]V]en(b— )]
= eN[(c—=bV(b—0c)]>e

Note that we used identity C5 to obtain the last equality and used identity
(] to obtain the last inequality.
O

In view of Theorem 3.1 and Theorem 3.4, we know that in the presence
of identity Cy, the identities F;, E5, and C; are equivalent and imply dis-
tributivity. It is possible, however, to prove this implication directly, without
appealing to the Axiom of Choice, as we now show. Again, the proof is a
slight variation of the proof given by Ward and Dilworth in [22] in the special
case when e is the greatest element of the lattice.

Theorem 3.5 Let L be a member of CRL satisfying identity Cy. If L satisfies
the equivalent identities Fy, Ey, and Cy, then its lattice reduct is distributive.

Proof. It suffices to prove that, for all a,b,c € L, a < (bV ¢) implies
a= (aAb)V (aAc). We need only establish that (a A b) V (a A ¢) < a; the
other inequality clearly holds in any lattice.

First, observe that, for all a,b,c € L, identity F; implies
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a—[(anb)V(anc)=la— (aAD)]V][a— (aNc).

Since the residual preserves meets in its second argument, we know by Lemma
1.2 (1) that

a—[(anb)V(anc)]>[en(a—Db)]VIeA (a—c).
Hence, Identities Cy and Fs together imply

a—[(anb)V(anc)]>eN[a— (bVc)]

Now, if we assume that a < (b V ¢), then a — (b V ¢) > e. Consequently, if
a < bV c, we see that

a—[(anb)V(aAc) >e,

which, of course, implies that a < (a Ab) V (a A ¢
U

We note that in the presence of identity Cs, the equivalent to identities
Cq, Ey, and E; imply the identity a- (bAc¢) = a-bAa-c. The converse is
not true. For example, multiplication distributes over finite intersections in
the ideal lattice of a Priifer domain (see Larsen et al. [15], p. 137); however,
not every such domain is a Dedekind domain.

4 More About the Structure of Con(L)

In Section 2, we provided an element-wise description for the congruences
of any member of L. of CRL by establishing an isomorphism between Con(IL)
and Subc(L). In the last section, we used this correspondence to characterize
in terms of identities those members of CRL which are subdirect products of
chains. We conclude this paper by proving that members of the variety CRL®
enjoy an additional property — their compact congruences form relatively
normal lattices.
A lattice L = (L, A, V) is relatively normal provided

1. L is a lower-bounded, distributive lattice, and
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2. the prime-ideals of L form a root-system under set-inclusion.

Recall that a poset is a root-system provided its principal uppersets are
chains. Relatively normal lattices form an important class of lattices in their
own right. Dual relative Stone lattices and the lattice of open sets of any
hereditarily normal topological space are relatively normal, as are the lattices
of compact congruences for many well-studied ordered algebraic structures
such as representable (-groups, Reisz spaces, f-rings, and Stone algebras.
(The reader is referred to Snodgrass and Tsinakis [18] and Hart and Tsinakis
[12] for details and an extensive bibliography on this class.)

Since the introduction of this class in the 1950’s, a number of conditions
on lower-bounded, distributive lattices equivalent to relative normality have
been obtained. The next result, due essentially to Monteiro [17], catalogues
several of these conditions. Its proof is left to the reader. For our purposes,
we shall find Condition (4) most useful.

Lemma 4.1 For a lower-bounded, distributive lattice L, the following are
equivalent:

1. L is relatively normal;

2. Any two incomparable prime ideals in L have disjoint open neighbor-
hoods in the Stone space of L;

3. The join of any pair of incomparable prime filters in L is all of L;

4. For all a,b € L, there exist u,v € L such that u ANv =1 and uV b=
aVb=aVwv.

We hasten to advise the reader that many authors who consider relative
normality express it as a property of the closed sets of a topological space
(whereas we have used open sets); they will use and prove the duals of the
statements in Lemma 4.1.

Theorem 4.2 IfIL be a member of CRLC, then the principal convex subalge-
bras of I form a relatively normal lattice.

Proof. Throughout the proof, we will use Theorem 2.9 repeatedly with-
out explicit reference. The compact, convex subalgebras of I form a lower-
bounded, distributive lattice. Let C(IL) denote this lattice, and let X,Y €
C(L). There exist a,b in the negative cone of L. such that X = Cfa] and
Y = C[b]. Let u and v be defined by
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e u=eA(b—a)
e v=cA(a—b).
We know know that C[u] N Clv] = C[u V v]. Consequently, since

uVv=eA[la—b)V(b—a)]=e,

by identities Cy and Cp, we see that Clu] N Clv] = {e}. To complete the
proof, we need to show that

Cla] vV Cv] = Cla] v C[b] = Clu] Vv Cb).

We will prove that Cla] V Clv] = C[a] V C[b]; proof of the other equality is
similar.

To prove that Cla] V Clv] C Cla] V C[b], it suffices to prove that a A v €
Cla] v C[b]. Since a < e by assumption, we know a Av = a A (a — b). By
definition, Cla] vV C[b] = C[{a,b}]; hence, it is clear that a A v € C[a] V C[b].

To obtain the reverse inclusion, it suffices to prove that aAb € Cla]V C[v].
Since multiplication distributes over finite meets (see comments at the end
of Section 2), we have

(anv)?=a*A[a-(a— b)]A(b— a)

Since a? < a by assumption, and since a - (¢ — b) < b by Lemma 1.2 (2), it
follows that (a A v)? < a Ab. Since a A b < e by assumption, convexity now
implies that a A b € C[a] vV C[v].

O

References

[1] M. Anderson and T. Feil, Lattice-Ordered Groups, An Introduction, Rei-
del, Dordrecht, Holland, 1988.

[2] R. Balbes and P. Dwinger, Distributive Lattices, Columbia, University
of Missouri Press, 1974

[3] Garrett Birkhoff, Lattice Theory, volume 25 of Colloquium Publications,
American Mathematical Society, 1967.

19



[4]
[5]

[6]

[10]

[11]

K. Blount and C. Tsinakis, Residuated Lattices, in preparation.

T. S. Blyth, The general form of residuated algebraic structures, Bull.
Soc. Math. France, 93 (1965), pp. 109-167.

T. S. Blyth, Loipomorphisms, J. London Math. Soc. (2), 2 (1970), 635-
642.

T.S. Blyth and M.F. Janowitz, Residuation Theory, Pergamon Press,
1972.

W.H. Cornish, Subdirect Decompositions of Semilattice-ordered semi-
groups, Mathematica Japonica, 18 (1973), 203-2009.

R.P. Dilworth, Abstract residuation over lattices, Bull. Amer. Math.
Soc., 44 (1938), 262-268.

R.P. Dilworth, Non-commutative residuated lattices, Trans. Amer.
Math. Soc., 46 (1939), 426-444.

G. Gierz, K. Hoffmann, K. Keimel, J. Lawson, M. Mislove, and D.
Scott, A Compendium of Continuous Lattices, Springer-Verlag, Berlin
Heidleberg New York, 1980.

J.B. Hart and C. Tsinakis, Decompositions for relatively normal lattices,
Trans. Amer. Math. Soc., 341 (1994), 519 - 548.

A. Horn, Logic with truth values in a linearly ordered Heyting algebra,
J. Symbolic Logic, 34 (1969), 395-408.

P. Kohler, Varieties of Brouwerian algebras, Mitt. Math. Sem. Geissen.
Selbstverlag des mathematischen seminars, 1975.

M. Larsen and P. McCarthy, Multiplicative Theory of Ideals, Academic
Press New York and London, 1971.

P. J. McCarthy, Homomorphisms of certain commutative lattice ordered
semigroups,Acta Sci. Math. (Szeged) 27 (1966), 63-65.

A. Monteiro, L’arithmetique des filtres et les espaces topologiques, De
Segqundo Symposium de Matematicas-Villavicencio (Mendoza, Buenos
Aires) (1954), 129-162.

20



[18] J. Snodgrass and C. Tsinakis, Finite-valued algebraic lattices, Algebra
Universalis 30 (1993), 311-318.

[19] M. Ward, Structure Residuation, Annals of Math., 39 (1938), 558-568.

[20] M. Ward, Residuation in structures over which a multiplication is de-
fined, Duke Math. Journal, 3 (1937), 627-636.

[21] M. Ward and R. P. Dilworth, Residuated lattices, Proceedings of the
National Academy of Sciencs, 24 (1938), 162-164.

[22] M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math.
Soc., 45 (1939), 335-354.

1. James Hart, Box 34, Middle Tennessee State University, Murfreesboro
TN 37132, (615)-898-2669, FAX (615) 898-5422, email: jhart@mtsu.edu

2. Lori Rafter, Department of Mathematics, Vanderbilt University, Nashville
TN 37235, (615) 322-6672

3. Constantine Tsinakis, Department of Mathematics, Vanderbilt Univer-
sity, Nashville TN 37235, (615) 322-6672, FAX (615) 343-0215, email:
constantine.tsinakis@uanderbilt. edu

21



