Ordinal Decompositions for Preordered
Root Systems

James B. Hart and Constantine Tsinakis

October 15, 2008

Abstract

In this paper, we explore the effects of certain forbidden substructure
conditions on preordered sets. In particular, we characterize in terms
of these conditions those preordered sets which can be represented as
the supremum of a well-ordered ascending chain of lowersets whose
members are constructed by means of alternating applications of
disjoint union and ordinal sums with chains. These decompositions
are examples of ordinal decompositions in relatively normal lattices
as introduced by Snodgrass, Tsinakis, and Hart. We conclude the
paper with an application to information systems.

1 Introduction

The term “ordinal decomposition” refers to an inductive construction intro-
duced by Snodgrass, Tsinakis, and Hart [6, 12, 13] that traces its origins to the
lexicographic sums of lattice-ordered groups explored in [2]. The paper Tsinakis
and Hart [6] defines these constructions, addresses existence and uniqueness of
ordinal decompositions, and presents motivation for their study. The key result
of that paper establishes that the most general context for studying ordinal
decompositions is a subclass of relatively normal lattices (lower-bounded dis-
tributive lattices whose prime ideals form a root system under set-inclusion)
delineated by certain forbidden substructures. Relatively normal lattices form
a diverse class that includes the lattices of compact congruences (principal con-
vex normal subalgebras) of representable residuated lattices. The variety of
representable residuated lattices is generated by its totally ordered members
and includes the varieties of MV-algebras, BL-algebras and Godel algebras.

In this paper, we consider order structures more primitive than, but still tied
to, relatively normal lattices; namely preordered root systems. (The finitely
generated lowersets of such systems form relatively normal lattices under set
inclusion — see Snodgrass and Tsinakis [12], Theorem 2.7). We demonstrate



that the notion of an ordinal decomposition arises quite naturally from a simple
classification scheme for posets satisfying the descending chain condition. We
conclude the paper by using the decomposition theory developed in Sections 2
and 3 below to explore the structure of information systems, important objects
in theoretical computer science.

An important potential application of our considerations to algebraic logic
— which will not be pursued here — is the development of a process for building
a large class of algebras in the varieties of BL-algebras and Goédel algebras
by starting with their totally ordered members and making use of the ordinal
decomposition of their filter lattice.

2 The Skeleton of a Preordered Root System

A preordered set R = (R, <) is a root system (dual tree) provided the principal
upperset Tr = {& € R : r < z} is a preordered chain for all r € R. In this
paper, we will develop a means of representing certain preordered root systems
as the suprema of well-ordered ascending chains of inductively constructed low-
ersets. These decompositions are straightforward, are uniquely determined by
the order structure of the root system, and can be applied in many areas of
order theory. Before presenting these decompositions in their full generality,
however, we will devote this section to a special case which provides the basis
for, and an explanation of, their construction.

Let R be a nonempty preordered root system which satisfies the descending
chain condition (DCC). Under these conditions, there is a straightforward way
to organize the elements of R. Let 7 be an ordinal and let F, = {B, : 0 < 7}
be a collection of maximal antichains in R constructed as follows:

1. By consists of all minimal elements of R.

2. If 0 < 7 has an immediate predecessor, then r € B,, if and only if

(a) r is a minimal element of R\ (J{B, : n < o}, or

(b) r € B,—1 and 1 r contains no minimal elements of R\ B,_1.

3. If 0 < 0 < 7 is a limit ordinal, then B, denotes the set of all minimal
elements of R\ |J{B, :n <o} .

For reference purposes, we will call this process the classification scheme for
R, and will refer to the sets B, as the o-levels of this scheme. The 0-level will
be called the initial level of the scheme.

The classification scheme we have just described can be accomplished in any
preordered set which satisfies DCC. However, the root system property gives us
a simple relationship between members of the sets B, :



e If ¢ has an immediate predecessor, then every member of B, must cover
at least one member of B,_1;

e If 0 < o is a limit ordinal, then for each b € B, there exists an ascending
chain C' = {b, : n < 0,b, € By} and |b covers |C in O(R), the lattice of
lowersets of R.

Lemma 2.1. If R is a nonempty preordered root system satisfying DCC, then
there exists an ordinal T such that R =|J{B, :n < 1}.

Proof. Since R is nonempty, we know that By # (). Let 0 < o < 7 and suppose
that there exist 7 € R such that r € B, for all n < 0. We will prove that the
set B, can be constructed, and that B, # B, for all n < 0.

Let S denote the set of all members of |r which do not reside in B,, for any
1 < 0. Clearly, S # () and therefore must contain minimal elements. Let s € S
be minimal in S. We will prove that s € B,.

Since s € By, we know that s is not minimal in R; hence, there exist ¢t € R
such that ¢t < s. Now, by assumption, for each ¢ < s, there exist n; < o such that
t € By,. Thus, s is minimal in R\ |J{B, : 7 < o}. Consequently, s € B,. O

Lemma 2.1 is valid only in root systems which satisfy DCC. It is possible,
however, to extend this result to a considerably broader class of preordered sets;
and, in so doing, develop a useful means of decomposing members of this class.
We begin with a definition.

Definition 2.2. Let P be a preordered set and let r,s € P. We say that r is
an ordinal extension of s provided

1. s€lr
2. |r\ ls is a preordered chain, every member of which is comparable to s.
Definition 2.3. Let R be any preordered root system. Define a binary relation

0rd on R as follows: (r,s) € 0rd if and only if

e 1 is an ordinal extension of s, or

e s is an ordinal extension of r.

Since R is a root system, it is routine to prove that the sets

Ord(r) ={s € R: (r,s) € Ord}

are pairwise disjoint. Hence, Ord is an equivalence relation. Now, for 0rd(r), 0rd(s) €
R/0xd, set 0rd(r) < Ord(s) if and only if



1. Ord(r) = 0xrd(s) or
2. 0rd(r) # 0rd(s) and r < s.

Once again, since R is a root system, it is routine to prove that < is well-defined
on R/0rd and is, in fact, a partial ordering.

By equating each member of R/0rd with one of its representatives, we can
identify R/0rd with a subposet of R. We will let Skel(R) denote any one of
these subposets (all of which are, of course, order isomorphic). We will call
Skel(R) a skeleton for R. Observe that Skel(R) is a partially ordered root
system.

Definition 2.4. Let P = (P, <) be a preordered set and let S be a subpreordered
set of P. We will say that S is a filet configuration in P provided

S=A{an:n < N}U{bpy1:n < N}
where N < w and
e a, is an upper bound for an41 and byy1;

® a1 is not comparable to byyq.

We refer to the ordinal N as the height of the filet configuration. The
members a,, of the configuration are called filets. A filet configuration is infinite
when N = w. The notion of filet configuration dates to Jaffard [7] where it
appeared in the context of lattice-ordered groups (see also McAlister [8] and
Hart and Tsinakis [6]).

Lemma 2.5. If R is a preordered root system, then the following are equivalent:
1. FEvery filet configuration in R is finite;
2. R/0rd satisfies DCC.

Proof. Every descending chain of height NV in R/0rd induces a filet configuration
of height N in R. To see why, suppose C = {0rd(a,) : n < N} is a descending
chain of height N in R/0rd. Since 0rd(an+1) < Ord(a,), the root system
property of R implies that there exist b,1 such that a,; is not comparable
to bpt1 and bp41 < an. The set {a, : n < N} U {byy1 : n < N} is a filet
configuration of height IV in R. It now follows that if every filet configuration
in R is finite, then R/0rd must satisfy DCC.

Conversely, every filet configuration in R of height N induces a descending
chain of height N in R/0rd. To see why, let S = {a, : n < N}U{b,41 :n < N}
be a filet configuration of height N and consider the classes Ord(a,,) in R/0rd.
Since by41 < G, Gpy1 < @y, and b, 41 is not comparable to a1, it follows that
Ord(an+1) < 0rd(ay) for all n < N. Consequently, the set {Ord(a,) : n < N}
forms a descending chain in R/0rd of height N. It now follows that if R/0rd
satisfies DCC, then every filet configuration in R must be finite. o



We are now ready to prove the main result of this section: Whenever we
have a root system R in which every filet configuration is finite, we may apply
our classification scheme to Skel(R) to obtain a decomposition of R in terms
of inductively defined members of O(R), the lattice of lowersets of R. More
specifically, we have the following result.

Theorem 2.6. Let R be a preordered root system in which every filet con-
figuration is finite. Then there exists an ordinal T and an ascending chain
C = {R, : 0 < 7} of lowersets of R such that R = |JC, and each R, =
U{0rd(a) : a € B, for some n < o}, where By, is the n-level of the classification
scheme for Skel(R).

Proof. In light of Lemmas 2.1 and 2.5, we need only prove that the sets R, are
lowersets of R. Let R, € C, r € R, and suppose that r < z for some x € R,,.
Let a,b € Skel(R) correspond to Ord(r) and Ord(z), respectively. Since x € Ry,
we know b € B, for some 7 < 0. Clearly, a < b; consequently, there exists an
ordinal n < o such that a € B,,. Thus, r € R,. O

3 Ordinal Decompositions

In this section, we will examine the implications of Theorem 2.6. In particular,
we will obtain a description of the decomposition which can be liberated from
its dependence on the root system property. We begin with some terminology.

Let P be a preordered set and suppose r,s € P. Whenever r is an ordinal
extension of s and |r\ |s # 0, we say r is a proper ordinal extension of s and
refer to r as an ordinal element in P. An ordinal element r of P is a maximal
ordinal element in P provided r admits no proper ordinal extension. We will
use M(P) to denote the sub-preordered set of maximal ordinal elements of P.

Proposition 3.1. Let R be a preordered set. The ordinal elements of O(R)
form a root system if and only if R is a root system.

Proof. Clearly, | r is an ordinal element in O(R) for all »r € R; hence the
ordinal elements of O(R) cannot form a root system if R is not a root system.
Conversely, suppose R is a root system, and suppose that X, Y are incomparable
ordinal elements in O(R). Let a € X and b € Y be such that a and b are
incomparable in R. Since R is a root system, we know that {a,b} cannot have
a lower bound in R. Hence, |a and |b are disjoint. Therefore, X and Y must be
disjoint. It follows that the ordinal elements of O(R) form a root system. O

Theorem 3.2. Let R be a preordered root system. The set M(O(R)) of mazimal
ordinal elements of O(R) is order isomorphic to R/0rd.



Proof. Let a € R and consider |0rd(a). If Y =|0rd(a) \ 0rd(a), then it is clear
that |a is a proper ordinal extension of Y in O(R). Hence, |0rd(a) is an ordinal
element in O(R). Now, suppose J is any ordinal extension of |0rd(a). If there
exist j € J\ |0rd(a), then j must be an ordinal extension of @ in R. This implies
j € Ord(a) — contrary to assumption. Hence, we must have J =|0rd(a); and
10rd(a) is a maximal ordinal element in O(R). In light of this discussion, we
may define a mapping f : R/0rd — M(O(R)) by f(0rd(a)) =]0rd(a).

On the other hand, suppose that M € M(O(R)). It follows that M is a
proper ordinal extension of some X € O(R). Let j € UM \ X, and consider
0rd(j). Clearly, we must have Ord(j) C M by Proposition 3.1. Let ¥ =
M \ 0rd(j). Clearly, M is a maximal ordinal extension of ¥ in O(R); hence,
M =]0rd(j) by Proposition 3.1. In light of this discussion, we may define a
mapping g : M(O(R)) — R/0rd by g(M) = 0rd(j), where j € M is such that
M is a proper ordinal extension of |j.

The mappings f and g are clearly mutually inverse and isotone, and therefore
provide the desired isomorphism. O

Let R be a preordered root system in which every filet configuration is finite.
Let us return to Theorem 2.6 and consider more carefully the lowersets R, of the
decomposition described there. It is possible to represent each R, as the union
of a maximal pairwise disjoint set whose members are either maximal ordinal
elements in O(R) or else the union of a transfinite chain of such elements. This
fact is a direct consequence of our classification scheme for Skel(R) and Theorem
3.2, as we now demonstrate.

If R is a preordered root system in which every filet configuration is finite,
then Theorem 2.6 tells us there exists an ordinal 7 and an ascending chain
C ={Ry : 0 < 7} such that R = |JC, where

R, = U{Ord(a) a € By, for some n < o}

and B, is the n-level of the classification scheme for Skel(R). By definition,
Ry = J{0rd(a) : a € By}. Since By is the set of all minimal elements of Skel(R),
we know 0rd(a) =|0rd(a) in R; hence, by Theorem 3.2, the set Cy = {0rd(a) :
a € By} is a maximal set of pairwise disjoint maximal ordinal elements. In
fact, Cp consists entirely of maximal linear elements in O(R); that is, maximal
lowersets which are chains.

Consider R, where 0 < n < w. By definition,
R, = U{Drd(a) :0rd(a) € By U...UB,}

Let 0 < j < n. According to our classification scheme, each member of B; is
either a member of B;_; or else exceeds a member of B;_;. Consider the set
C, = {l0rd(a) : a € B,}. Clearly, R,, = |J Cy; and, since B, is by construction
a maximal antichain in Skel(R), we know by Theorem 3.2 that C,, is a maximal,
pairwise disjoint set of maximal ordinal elements in O(R).



If we consider the sequence Cy,...,C,_1 so constructed, we can say even
more about the members of C,,: A member I of C,, is either a member of C,,_1,
or else is the maximal ordinal extension in O(R) of the union of two or more
members of Cp,_1. Indeed, suppose I € C,, but I ¢ C,_1. It follows that I
properly contains a member of C,,_1. In fact, since no member of Skel(R) can
be a proper ordinal extension of another, we know that I properly contains at
least two members of C,,_1. If we let D; denote the set of all members of C,,_1
(properly) contained in I, then I must be a proper ordinal extension of |J Dj.
To see why, let I =|0rd(a), where a € Skel(R) and suppose z € I\ Ord(a).
Since © € R, there must exist b < a such that z € 0rd(b). It follows that
there must exist J € Dy such that @ € J; hence, z € |JD;. Consequently,
I'\UD; = 0rd(a); and I is a (maximal) ordinal extension of | J D;.

Consider now the lowerset R,,. By definition, we know

R, = U{Ord(a) :a € By, for some n < w}

Let D, = {{JA": i € I}, where each A* = {J! : n < w} is an ascending chain
such that Jfl € C, for each n < w. It is routine to prove that D, consists
of pairwise disjoint lowersets. Let C!, = {|0rd(a) : a € By,}. According to
our classification scheme for Skel, each member of C!, must properly contain
a member of D,. Let D} denote the set of all members of D, which are not
contained in a member of C/, and let C,, = C/, U D}. Clearly, the members of
C,, are pairwise disjoint and are either maximal ordinal elements in O(R), or
else the union of a transfinite chain of such elements. Furthermore, it is clear
that R, = | C..

Suppose now that 0 < o < 7 is any limit ordinal, and suppose the sets
(), have been constructed for all n < 0. We may repeat the argument in the
previous paragraph to construct the set C,,. Using the set C, in place of Cy, we
can with minor modifications repeat the arguments for the construction of the
sets C,, to construct C,,, for any n < w. In particular, we have the following
result:

Theorem 3.3. If R is a nonempty, preordered root system in which every filet
configuration is finite, then there exists an ordinal T and an ascending chain
C ={R, : 0 < 7} of lowersets of R such that R =|J C, where each R, =|JCy,
and the sets C, are constructed as follows:

1. The set Cy consists of all mazimal linear elements of O(R);

2. If o < 7 has an immediate predecessor, then X € C, if and only if X €
Co—1 or X is the mazimal ordinal extension of the union of two or more
members of Cy_1.

3. If o < 1 is a limit ordinal, then X € C, if and only if X is the supremum
of a transfinite sequence S = {Y, : n < o}, where Y, € C,, for alln < o
or the maximal ordinal extension of such a sequence, when such exists.



Theorem 3.3 is a result of applying the classification scheme of Lemma 2.1
to the skeleton of a preordered root system in which every filet configuration
is finite. The reader will observe, however, that the decomposition in Theorem
3.3 does not explicitly use the skeleton in its description — it is described only
in terms of lowersets. If we forego the use of maximal ordinal extensions, we
can place this decomposition in a more general setting. Before doing so, we
introduce a bit of terminology.

Two elements are orthogonal in a preordered set R provided they have no
lower bound in R (other than the least element, if such exists). A subset of R
is orthogonal if its elements are pairwise orthogonal.

Definition 3.4. Let R be a preordered set and let S be a lowerset of R. We
say that S admits an ordinal decomposition in O(R) provided there exists an
ordinal T and an ascending chain C = {R, : ¢ < 7} of lowersets of R such that
S =C, where R, =|JCy, and the sets C, are constructed as follows:

1. Each set Cy is an orthogonal family of lowersets of S;

2. If o < 71 is not a limit ordinal, then x € Cy if and only if x € Cy_1, or
x is a proper ordinal extension of the union of two or more members of
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3. If 0 < o < 7 is a limit ordinal, then x € Cy if and only if x is a (possibly
trivial) ordinal extension of a chain S = {b, : 7 < o}, where b,, € C,, for
alln < o.

We call the sets C, the levels of the decomposition.

We know by Theorem 3.3 that if R is a preordered root system in which
every filet configuration is finite, then R itself admits an ordinal decomposition
whose initial set consists of proper linear elements. The converse is also true.

Theorem 3.5. If R is a preordered set, then the following are equivalent:
1. R is a root system in which every filet configuration is finite;

2. R admits an ordinal decomposition whose initial level consists of proper
linear elements.

Proof. We need only prove that Claim (2) implies Claim (1). To see that R is
a root system, suppose that j and k are incomparable members of R. There
exist least ordinals o, 3 < 7 such that j € Z, and k € Z3. We may assume that
o < B. Since Cg is an orthogonal set, there exist unique X,Y € Cjs such that
j€ X and k €Y. It will suffice to prove that X # Y.

Since Cj consists of pairwise orthogonal linear elements, if 8 = 0, there is
nothing to show. Suppose 0 < . Since k € Zg and k ¢ Z, for n < §, Y must



be a proper ordinal extension of the union of a set D constructed in one of two
ways: If 3 is a limit ordinal, then D is an ascending chain such that DNC,, # ()
for all n < f3; if B is not a limit ordinal, then D is subset of C3_; containing at
least two elements. In either event, we must have |JD Clj C Y. Thus, Y is
an ordinal extension of |j. Since j is therefore comparable to every element of
Y, it follows that X € Y. The fact that Cj is an orthogonal set implies that
X#Y.

We now know that R is a root system. To complete the proof, we will show
that R/0rd satisfies DCC. Let Ord(x),0rd(y) € R/0rd be such that Ord(x) <
0rd(y). By assumption, there exist least ordinals a, 8 < 7 such that |z C Z,
and |y C Zg. Consequently, there exist unique U € C, and V € Cjs such that
xz € U and y € V. Since a and  are minimal, both U and V must be ordinal
elements of O(R) and as such are either comparable or disjoint by Proposition
3.1. Since z < y by assumption, we know that U and V are comparable; indeed,
we must have U C V. We cannot have U =V (that is, & = ) since |y is not an
ordinal extension of |z by assumption. Since the sets C, are all orthogonal sets
in O(R) (in fact, they are pairwise disjoint sets), it now follows that Z, C Zg.
Consequently, any descending chain D in R/0rd induces a descending chain in
{Z, : 0 < 7} order isomorphic to D. Therefore, R/0rd satisfies DCC. The
desired result is now a consequence of Lemma 2.5. O

An ordinal decomposition whose initial level consists of proper linear ele-
ments will be called a linear-based ordinal decomposition. Theorem 3.5 tells us
that a preordered set admits a linear-based ordinal decomposition if and only if
it is a root system which satisfies the conditions of Theorem 3.3. In particular,
if R admits a linear-based ordinal decomposition, then we may assume that

e R is a root system in which every filet configuration is finite, and

e R admits a linear-based ordinal decomposition in which each level con-
tains either maximal ordinal elements of O(R) or the unions of transfinite
sequences of such elements.

We will call the decomposition of Theorem 3.3 a canonical linear-based or-
dinal decomposition. It is possible to devise structural conditions on the root
system which afford considerable control over canonical ordinal decompositions.
Such conditions are presented in detail for relatively normal lattices in Hart and
Tsinakis [6] and can, with a modicum of effort from the reader, be translated
into the context of preordered sets. We conclude this section by considering a
few such restrictions that might be of interest to theoretical computer scientists.

Corollary 3.6. If R is a nonempty partially ordered root system satisfying
DCC, then the following are equivalent:

1. For each r € R, there exists an ordinal k < w such that every descend-
ing chain in |r contains at most k elements and one contains exactly k
elements;



2. There exists an ordinal N < w such that R = |J{By, : n < N}, where the
sets By, are the n-levels of the classification scheme of Lemma 2.1.

Proof. Suppose that Claim (1) is met, and let » € R. It will suffice to show
that there exist n < w such that » € B,,. Let n, be the ordinal associated with
r by Claim (1), and let C be a descending chain in |r containing exactly n,
elements. For purposes of notation, let C' = {¢; : j < n,}, with ¢j1; < ¢; for
j < n,. Note that we must have r = ¢y. Since ¢,,_; is the least element of C,
it follows that ¢,,._1 must be minimal in R and hence a member of By.

Consider the element c,,._2. If ¢,,.—2 € Bi, then ¢,,—o is not minimal in
R\ By. Let 2 € R\ By be a minimal element below ¢, _o. It follows that
x exceeds some y € By. Now the chain r > ¢; > ... > ¢cp.20 > > yis a
descending chain in |7 containing n, + 1 elements — contrary to the choice of
n,. Hence, we must have ¢,,,_2 € Bj.

By repeating the above argument, we can conclude that ¢; € B, _;_; for
all j <n,. In particular, r € B, _1.

Conversely, suppose that Claim (2) is met. Let » € R and let n, < w be the
smallest ordinal n < w such that r € B,,. Let C = {¢; : § < N} be a maximal
descending chain in |r, where r = ¢ and ¢;41 < ¢; for j < N. By Claim (2),
for each j < N, there exists a smallest ordinal n; such that c; € By,;. We know
that cy € By and ¢g € B,,,.. It follows that N < n, + 1.

To complete the proof, we must find a descending chain in |7 containing
exactly n, + 1 elements. If r € By, there is nothing to prove; hence, suppose
that 0 < n,.. Since n, is the smallest ordinal k£ such that r € By, we know that
r & B, _1. Hence, there exist ¢ € B, _1 such that ¢ < r.

Now, if it is true that every ¢ € B,,._1 which is below r is also a member of
B, —2, then we would have r minimal in B\ B, —2. This, however, implies that
r € By, _1 — contrary to assumption. Hence, there must exist some ¢; < 7 in
B,,,.—1 which is not contained in B,, _o. It follows that n, — 1 is the smallest
ordinal k such that ¢; € By. Repeating this argument with ¢; in place of r, we
can find a ¢y € By, _2 such that c; < ¢; < r which is not contained in B; for
any j < n, — 2. Continuing in this fashion, we construct a descending chain
Cn, < Cpp—1 <..<cy<c <rin |r, wherec,, € By. O

The following result can be proven quite easily by mimicking the arguments
contained in the proof of Corollary 3.6.

Corollary 3.7. If R is a nonempty partially ordered root system satisfying
DCC, then the following are equivalent

1. There exists an ordinal 0 < N < w such that every descending chain in R
contains at most N elements, and one contains exactly N elements;
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2. There exists an ordinal 0 < N < w such that R = |J{B, : n < N}, where
the sets B,, are as described above.

4 Information Systems

In this section, we present an application of the theory developed in the previous
sections. In particular, we will demonstrate that it is possible to obtain ordinal
decompositions of certain information systems in terms of certain information
subsystems and characterize those systems which admit such decompositions.
We begin with some introductory remarks and definitions.

In the late 1960’s, Dana Scott introduced continuous lattices into theoretical
computer science as a means of providing models for spaces on which one could
define computable functions. However, these objects, while mathematically el-
egant, were crude in the sense that they contained many elements which could
not be assigned a computationally natural meaning. (For more information, see,
Gierz, et al. [4] and Vickers [14]). In time, the order theoretic models Scott and
others considered evolved into what we now call domains — certain classes of
algebraic posets. Unfortunately, the level of abstraction required to understand
domain theory remained an obstacle to its widespread use. To remedy this
problem in some sense, Scott imported from logic the notion of an information
system to provide a set-theoretic approach to domains. (See Scott [9, 10, 11]).

Viewed from a logician’s perspective, an information system for an object
or a process is a triple (9, Con,F), where S is a collection of propositions (or
instructions) concerning the object or process, Con is a collection of finite subsets
of S which are somehow “consistent” with one another, and F is a relation of
interdependence between members of Con. The members of S are thought of
as providing simple bits of information about the object or process and are
therefore called tokens. The set Con is called the consistency predicate, and
is known as a relation of entailment.

The precise meanings of consistency and entailment are left to the system’s
designer. However, one can often understand A € Con to mean that the tokens
in A may be assimilated, understood, executed, etc. without encountering con-
tradiction or conflict; and one can often understand A - B to mean that the
information content of A “implies” or “refines” that of B.

An information system is assumed to obey certain common sense properties
normally associated with the notions of consistency and entailment. These
properties are made mathematically precise in the following definition. (In this
definition and all the work that follows, we let Fin(S) denote the set of all finite
subsets of a set S, partially ordered by set-inclusion.)

Definition 4.1. An information system is a triple S = (S, Con, |), where
e [S1 S is a set;

11



e 1S2 Con is a nonempty lowerset of Fin(S) such that | JCon = S;

e [S3 + is a preorder on Con such that,

1. AF B for all BC A;

2. whenever A,B,C € Con, A+ B, and A+ C, then BUC € Con and
AR (BUCQ).

We point out that Definition 4.1 is the one used in Hart and Tsinakis [5]
and differs slightly from the classical definition of an information system found
in Scott [10], and Davey and Priestley [3]. In particular, these authors define
entailment as a binary operation on Con x S rather than on Con Xx Con.
The difference is semantic only; a quick comparison of axioms will convince
the reader that our definition of entailment yields the classical definition, while
the classical definition of entailment can be used to build our definition. The
primary advantage of our definition is that it allows us to view (Con,t) as a
preordered set.

Let S = (S,Con,t) be an information system. A member B of Con is
initial provided B is entailed by the empty set; that is, provided B €. Let
Con* = Con\ [{) denote the set of all noninitial members of Con.

Let RtSys denote the class of all information systems (5, Con, ) for which
(Con*,F) is a root system. (Note that it is not possible, in general, for (Con,F)
to be a root system since each of its members entails the empty set.) We have
the following result as a direct consequence of Theorem 3.5.

Corollary 4.2. IfS = (S, Con, ) is an information system, then the following
are equivalent:

1. S is a member of RtSys, and every filet configuration in (Con, ) is finite;

2. (Con*,F) admits an ordinal decomposition in O(Con™) whose initial level
consists of proper linear elements.

Corollary 4.2 provides a decomposition of (Con™, ) in terms of lowersets of
(Con™, ). We can, however, use this result to obtain an ordinal decomposition
of the information system S in terms of certain subsystems.

Definition 4.3. Let S = (S,Con,F) and T = (T,Cony,Fr7) be information
systems. We say that T is a subinformation system of S provided T C S,
Cony C Con, and brCH. If, in addition, Conr is a lowerset of (Con,t), we
will say that T is a full subinformation system of S.

Let S = (S, Con,F) and T = (T, Cong, 1) be information systems. If T is a
subinformation system of S, then we will write T C S. Let FSub(S) denote the
set of all full subinformation systems of S. It is clear that FSub(S) is a poset
under C; however, we can say considerably more than this.
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Lemma 4.4. LetS = (S, Con, ) be an information system, let T = (T, Cony,
) € FSub(S), and let L € O(Con). The assignments T — Conp and L —
(UL, L,br) (where \, is the restriction of = to L) provide an order isomor-
phism between Fsub(S) and O(Con).

Lemma 4.4 follows directly from the information system axioms in Defini-
tion 4.1. This isomorphism allows us to export the ordinal decomposition of
Corollary 4.2 into FSub(S) thereby giving us an ordinal decomposition of S in
terms of its full subinformation systems. Before we state this result, however,
let us examine the structure of FSub(S).

Let S = (S,Con, ) be an information system. In light of Lemma 4.4, we
know that FSub(S) is a bialgebraic (algebraic and dually algebraic), distributive
lattice. Joins and meets in this lattice are easily described: Let F = {T; :i € I}
be any family of full subinformation systems of S, where each T; = (T}, Con;, ;).
Then we know

e N\F=Sif F= 0,

e NF=({Ti:ieI},N{Con;:iel},({ri:iel})if F+#0;

o VF = (U 10,10,Fp) if F =0 (here, |0 is taken in (Con,+));

o VF=(JHT::ieI},U{Con;:iel},U{ri:iel})if FF#0.
Furthermore, the compact, join-prime (CJP) members of FSub(S) are pre-

cisely those triples IS(A) = (U A, |4,F 1), where A € Con*. (For details, the
reader is encouraged to consult Hart and Tsinakis [5].)

In Definition 2.2, we introduced the notion of an ordinal extension in a
preordered set. It is possible to give a sensible definition of ordinal extensions
within an information system as well. The following definition spells out what
we mean when we say one information system is an ordinal extension of another.

Definition 4.5. Let S = (S,Con,F) be an information system and let T =
(T, Cony, 1) be a subinformation system of S. We say that S is an ordinal
extension of T provided

e A+ B for all B € Cony and A € Con \ Cony;

e the set Con \ Cong is a pre-ordered chain in (Con,F).

This definition is really just a modification of Definition 2.2, as the following
result demonstrates.
Lemma 4.6. Let S = (5,Con,t) be an information system and let X =

(X,Conx,Fx) and Y = (Y,Cony,ty) be full subinformation systems of S.
If X CY, then the following are equivalent:
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1. Y is an ordinal extension of X (in the sense of Definition 4.5);

2. Cony is an ordinal extension of Cony in O(Con) (in the sense of Defintion
2.2);

3. Y is an ordinal extension of X in FSub(S) (in the sense of Definition 2.2).

Proof. The equivalence of Claims 2 and 3 follow at once from Lemma 4.4; we
will prove the equivalence of Claims 1 and 2.

If Y = X, clearly there is nothing to show. Suppose that Y is a proper
ordinal extension of X; that is, assume Cony \ Conx # (. We must prove that
in O(Con), |Cony\ |Cony is a chain, each member of which contains Conx.
Let F =|Cony\ |Cony and let L € F. It follows that L must contain members
of Cony \ Cony; let A be such a member. By Definition 4.5, we know A by B
for all B € Cony; thus, L contains Conx.

It remains to prove that F is a chain in O(Con). Suppose that I,J are
incomparable members of |Cony. It follows that there exist A € I'\ (I NJ) and
B e J\ (INJ). Clearly, A and B are entailment independent; that is, A t/y B
and B t/y A; consequently, by Definition 4.5, both A and B must be members
of Cony. Since no member of INJ can be a member of Cony \ Conx (otherwise
we would have A, B € INJ by Definition 4.5), it follows that I, J € |Conyx. We
now see that F is a chain in O(Con).

Conversely, suppose that |Cony is an ordinal extension of |[Conx in £(Con)
in the sense of Definition 2.2. Suppose that A, B € Cony \ Conyx. It follows
that |A ={C € Con: Aty C} and |B = {C € Con : B Fy C} are members
of |Cony\ |Conx and therefore must be comparable in O(Con) by Definition
2.2. Consequently, either A -y B or B Fy A. Furthermore, it follows from
Definition 2.2 that | A must contain Conx; hence, A -y C for all C' € Cony.
Therefore, Y is an ordinal extension of X. O

The following result is a direct conseqence of Lemma 4.6 and Corollary 4.2.

Corollary 4.7. For an information system S = (S,Con, ) the following are
equivalent:

1. (Con™,F) is a root system in which every filet configuration is finite;

2. There exists an ordinal T and an ascending chain C = {R, : ¢ < 7} of full
subinformation systems of S such that S = \/C, and each R, € C is the
join in FSub(S) of a set C, whose members are constructed as follows:

(a) Co consists of pairwise disjoint full subinformation systems whose
consistency predicates are chains under entailment;
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(b) if o < T has an immediate predecessor, then X € Cy, if and only if
X € Cy—1 or else X is a proper ordinal extension of the join of two
or more members of Co_1;

(¢c) If 0 < o < 7 is a limit ordinal, then X € C, if and only if there exists
an ascending sequence {Y, : n < o}, where Y, € Cp, such that X is
either the join of this sequence or a proper ordinal extension of this
join, if such exists.

This decomposition theorem implies an intriguing fact about the nature of
consistency and entailment in information systems which satisfiy its conditions.
Let S = (S, Con,F) be an information system and let T = (T, Conr, 1) be a
subinformation system of S. We say that T is fully consistent in S provided
Fin(T) C Con; that is, provided every finite subset of T is consistent in S
(though not necessarily in T). If S is fully consistent in itself, we simply say
that S is fully consistent.

Proposition 4.8. Let S = (S, Con,F) be an information system and let T =
(T, Conr, 1) be a subinformation system of S. IfS is a proper ordinal extension
of T, then S is fully consistent.

Proof. We first prove that T is fully consistent in S. Let F' € Fin(T') and let
x € F. Since S is a proper ordinal extension of T, there exist A € Con \ Conry.
By Axiom IS1, {z} € Cong; hence, the first condition of Definition 2.2 implies
that A F {x}. Therefore, Axiom IS4 implies that F' € Con.

Now, suppose that {z,y} C S\ T. Since {z},{y} € Con \ Conr and since
Con \ Conr is a pre-ordered chain in (Con,F), either {z} F {y} or {y} F {z}.
Hence, {z,y} € Con \ Cony by Axiom IS4. If we now assume F € Fin(S\ T),
a simple induction argument on the cardinality of F' proves that F € Con \
Conr. O

Proposition 4.8 tells us that, for an information system S = (.5, Con, I-) satis-
fying Corollary 4.7, consistency and entailment are both completely determined
by the ordinal decomposition; and, furthermore, are determined in a simple in-
ductive manner. Indeed, each level of the decomposition consists of a pairwise
orthogonal family of fully consistent subsystems. Assume that the decompo-
sition is canonical. To create one level from its predecessor, we partition the
predecessor level into disjoint sets; the joins (in FSub(S)) of some of these sets
may admit proper ordinal extensions and some may not. If the join of a set
does not admit a proper ordinal extension, we bring its members directly into
the next level; this action affects neither the consistency predicate nor the en-
tailment relation. Suppose the join of a subset D of the previous level does
admit a proper ordinal extension. We bring its maximal ordinal extension (call
it T) into the next level. In so doing, we add information about the consistency
predicate and the entailment relation:
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e We learn that every finite subset of tokens in \/ D is consistent.
e Entailment is left unchanged in \/ D.

e We learn of a new family of consistent subsets of S; namely those appearing
in ConT\ConV p- Moreover, we learn that this family forms a chain under
entailment.

e We learn that each new consistent subset of S appearing in Conz\ Cony, p
entails every member of Cony/ p.

Furthermore, since the initial level of the decomposition consists of subsystems
whose consistency predicates form chains under entailment, this knowledge we
gain from the levels is all there is to know about the consistency predicate and
the entailment relation of S.

Of course, we may apply the more specialized decomposition theorems pre-
sented in Section 3 to information systems as well. We conclude this section
by restating these results in the terminology of this section. The proofs are
straightforward and left to the reader.

Corollary 4.9. Let S = (S,Con,F) be an information system and let N be a
positive integer. The following are equivalent:

1. (Con*,F) is a root-system, and (Con,t) has filet-height N ;

2. S admits a canonical, linear-based ordinal decomposition in FSub(S) which
terminates at N.

Corollary 4.10. For an information system S = (5, Con,t), and positive in-
teger N the following are equivalent:

1. (Con™,}) is a root-system containing exactly N distinct mazimal pre-
ordered chains;

2. (Con*,F) is a root-system, every entailment-independent subset of Con
contains at most N members, and one such set contains exactly N mem-
bers;

3. S admits a canonical finite, linear-based ordinal decomposition in FSub(S)
whose initial level contains exactly N members.
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