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Abstract. The starting point of the present study is the interpretation of intuitionistic

linear logic in Petri nets proposed by U. Engberg and G. Winskel. We show that several

categories of order algebras provide equivalent interpretations of this logic, and identify

the category of the so called strongly coherent quantales arising in these interpretations.

The equivalence of the interpretations is intimately related to the categorical facts that

the aforementioned categories are connected with each other via adjunctions, and the

compositions of the connecting functors with co-domain the category of strongly coherent

quantales are dense. In particular, each quantale canonically induces a Petri net, and this

association gives rise to an adjunction between the category of quantales and a category

whose objects are all Petri nets.
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1. Introduction

Throughout this paper, we shall exclusively consider commutative algebraic
structures, and omit the adjective “commutative” when referring to them.
For example, we shall use the terms “monoid” for “commutative monoid,”
“quantale” for “commutative quantale,” “free quantale” for “free commuta-
tive quantale,” etc.

Linear logic, introduced by J. -Y. Girard [5], is a refinement of classical
logic. It has been described as a “resource conscious” logic because resources
are consumed, or discarded under explicit rules. The connections between
variants of linear logic, Petri nets, and quantales are the subject of many
studies, including [1], [3], [4], [6], [8], [14], and [7]. In what follows, we shall
use the term linear logic to refer to the fragment of commutative, intuition-
istic, propositional linear logic that does not include the modality ? and the
connective .................................................

............
.................................. (see Section 6.1 for pertinent definitions).

The starting point of this work is the interpretation of this logic in Petri
nets, proposed by U. Engberg and G. Winskel in [3]. Their order theoretic
approach, henceforth referred to as net semantics, is a variant of Girard’s
phase semantics in [5], as well as Yetter’s quantale semantics in [14], and is
based on the fact that every Petri net induces a preorder � (reflexive and
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transitive relation) on its set of markings, called the reachability relation.
The markings S⊗ form a free monoid over the set S of places of the net,
and the reachability relation is compatible with the binary operation, that
is, if a � b, then (a + c) � (b + c), for all a, b, c ∈ S⊗. Thus, (S⊗,�)
is a preordered monoid (see Section 3), and the quantale associated with
the Petri net is the set of down sets of (S⊗,�). Recall that a subset I of
preorder set (P,�) is a down set of P if I =↓ I, where, for each A ⊆ P ,
↓ A = {p ∈ P | ∃ a ∈ A, p � a}. It should be noted that, unlike quantale
semantics, values of the formulas in net semantics are restricted to those
that extend the assignments of atomic propositions to principal down sets
of the corresponding quantale. The choice of the quantales and valuation
maps in net semantics reflects the view that each place of the net is an
atomic proposition, and its interpretation is the set of markings that are
prerequisites for it.

Evidently, the quantales associated with Petri nets are distributive lat-
tices (in fact frames), since joins and meets are simply unions and inter-
sections, respectively. Thus, Petri nets are potentially useful for modeling
the extension of linear logic that includes the lattice-distributive law as an
axiom, but they are inadequate to interpret the full linear logic. It is worth
contrasting the Engberg-Winskel approach with that in [8], where the mod-
els of the logic are certain linear categories. Linear categories are essentially
the categorical analogues of residuated lattices. Categorical models share the
same mathematical ideas with the interpretations by residuated lattices or
quantales (see [13]). For example, completeness of the models can be tested
by a “free” linear category, essentially the “Tarski–Lindenbaum Category”
of the theory.

Category theory provides the framework for exploring further the nature
of the correspondence between Petri nets and quantales as models of linear
logic. The pertinent categories are the category Quant of quantales, and
the category Petri consisting of Petri nets and morphisms preserving the
static structure and behavior of the net (see Section 2.2). An important
fact underlying many of the considerations of the present paper is that Petri
nets are essentially relational systems of the form (S⊗, R), where S⊗ is the
free monoid over the set S of places of the net and R is a binary relation
on S⊗. Thus, all preordered monoids of the form (S⊗,�) may be viewed
as Petri nets, and a category PreoPetri, with objects this algebraic class of
nets, suffices for net semantics.

The nature of the correspondence between Petri nets and quantales has
hitherto been opaque. The first question to consider is whether the quantales



Order Algebras as Models of Linear Logic 197

arising in net semantics can be characterized abstractly within the class
of all quantales.

• Characterize, up to isomorphism, the (necessarily distributive) quan-
tales associated with net semantics.

It is shown in Section 5 that these are the so called strongly coherent quan-
tales, that is, those quantales whose completely join-prime elements form a
submonoid that order generates the quantale. It is evident that the quan-
tale of down sets of a preordered monoid of the form (S⊗,�) is strongly
coherent. The nontrivial direction of the result is to establish that every
strongly coherent quantale is isomorphic to the quantale of down sets of the
reachability relation of some Petri net.

It is also important to inquire whether the aforementioned correspon-
dence is categorical, and whether every quantale canonically induces a Petri
net.

• Is the correspondence from Petri to Quant functorial? Moreover, is
there a functorial correspondence in the opposite direction?

The first part of the question has been answered by J. Lilius in [7], where it is
shown that the reachability relation induces a functor from Petri to Quant,
but the category SCohQuant of strongly coherent quantales is not identified
there. We extend Lilius’ result by showing that the functor in question has
a right adjoint, thereby establishing that the categories Quant and Petri
are closely connected. A crucial step in establishing this result is to show
that the categories Petri and PoMon – of partially ordered monoids and
monotone monoid homomorphisms – are connected by an adjunction, and
are equivalent models of the logic. Here, equivalence means that for every
sequent that is valid in a member of Petri, there exists a member of PoMon
in which the sequent is valid, and conversely. In this sense, it appears that
the algebraic category PoMon is a convenient category for abstracting the
Engberg-Winskel correspondence. Given a partially ordered monoid, one
passes from the logic to quantales by mapping the atomic propositions to
the elements of the monoid and then taking the down sets of this monoid
(see Section 6.3).

It should be noted that the interpretations of linear logic in Petri and
PreoPetri are “external” to the categories, in the sense that they require the
use of the category Quant, or more precisely SCohQuant. This leads to the
following question.

• Is there a category of order algebras isomorphic to Petri or PreoPetri
in which linear logic can be interpreted internally?
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In Section 6, we define the category FrQuantOp, of free quantales with a
single operator, which is isomorphic to PreoPetri, and in which linear logic
can be interpreted internally. Its definition involves quantic nuclei on free
quantales and provides an alternative way for viewing the correspondence
between Petri nets and strongly coherent quantales. Given a monoid M ,
there is a canonical way to construct a quantale ℘(M) with lattice struc-
ture the Boolean lattice of all subsets of M , and multiplication ◦ defined as
A ◦ B = {ab | a ∈ A, b ∈ B}, for all A,B ∈ ℘(M). As was noted earlier, the
set S⊗ of markings of a Petri net is a free monoid over the set S of places of
the net, and hence, for any set S, ℘(S⊗) is the free quantale generated by
S. Now every quantale is “canonically” isomorphic to the image of a quan-
tic nucleus on a quantale of the form ℘(S⊗) and, as was shown in [7], the
reachability relation on S⊗ gives rise to a quantic nucleus whose image is the
quantale of down sets of S. Such a quantic nucleus is evidently linear, that
is, it preserves arbitrary joins. We show that there exists a bijective corre-
spondence between linear quantic nuclei on ℘(S⊗) and preorders on S⊗ that
are compatible with the semigroup operation. This correspondence actu-
ally extends to an isomorphism of the categories PreoPetri and FrQuantOp.
The objects of the category PreoPetri are preordered monoids of the form
(S⊗,�), which may be viewed as special types of Petri nets, and those of
FrQuantOp are pairs in the form (℘(S⊗), α), with α a linear quantic nucleus
on ℘(S⊗).

2. Preliminaries

In this section we introduce the categories Petri of Petri nets and RelPetri of
relational Petri nets. The category Petri has the same objects as the category
with the same name in [7], but its morphisms are more restrictive. The
category RelPetri casts Petri nets in a familiar algebraic form and provides
the first step in a hierarchy of categories that provide equivalent models of
linear logic and are connected with each other via adjunctions.

2.1. Multisets
A multiset is a set in which the multiplicity of an element is taken into
account. In what follows, we will restrict our attention to finite multisets,
that is, multisets in which at most finitely many elements have nonzero
multiplicities. More formally, we have the following definition.

Definition 2.1. A multiset p over a set S is a map p : S −→ N from S
to the natural numbers N = {0, 1, 2, · · · }. A multiset p over S is finite if
p(a) = 0 for all but finitely many a ∈ S. The set of all finite multisets over
S is denoted by S⊗.
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There is a natural operation + and a natural partial order ≤ on S⊗,
defined respectively as

(p + q)(a) = p(a) + q(a), ∀p, q ∈ S⊗, ∀a ∈ S; and

p ≤ q iff p(a) ≤ q(a), ∀p, q ∈ S⊗, ∀a ∈ S.

For a ∈ S, we write a for the characteristic function of {a}, that is, the
multiset given by a(a) = 1 and a(s) = 0, for all s 
= a. The constant function
0, which maps all elements of S to 0, is the unit for the operation + and the
bottom element for the partial order. We may also define a partial operation
− on S given by (q − p)(a) = q(a) − p(a),∀a ∈ S, whenever p ≤ q.

We state the following simple result for future reference.

Proposition 2.2. Let S be a set and let S⊗ be the set of finite multisets
over S. The following properties hold.

1. (S⊗,+,0) is isomorphic to the free monoid over S. Moreover, S =
{a | a ∈ S} is the set of free generators for it.

2. (S⊗,+,0) satisfies the cancellation law for +, that is, if p + t = q + t,
then p = q, for all p, q, t ∈ S⊗.

2.2. Petri Nets

We start with the standard definition of the concept of a Petri net. The
interested reader may consult [11] for an introduction to Petri nets and their
connections with the theory of concurrency.

A Petri net is a triple N = (S, T, F ) consisting of a set S of places, a dis-
joint T of transitions, and a finite multiset F – called the causal dependency
relation – over (S × T ) ∪ (T × S).

Several categories of Petri nets have been proposed in the literature,
see for example [9], [10], and [7]. The category Petri below has the same
objects as the category with the same name in [7], but its morphisms are
more restrictive. The definition of its objects is motivated by the following
observation. In the preceding definition, each t ∈ T gives rise to the multisets
i(t), o(t) ∈ S⊗ defined by i(t)(s) = F (s, t) and o(t)(s) = F (t, s), for all s ∈ S.
Note that F uniquely determines the maps i, o : T −→ S⊗, with values i(t)
and o(t), and conversely. This leads to the following definition for the objects
of Petri.

Definition 2.3. A Petri net is a quadruple N = (S, T, i, o), where S is a
set whose elements are called places, T is a disjoint set whose elements are
called transitions, and i, o : T −→ S⊗ are arbitrary maps. For each t ∈ T ,
i(t) is referred to as the preset of t and o(t) as the postset of t.
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The morphisms must preserve the static structure and the behavior of
the net. That is, a morphism from (S, T, i, o) to (S′, T ′, i′, o′) must take
places to places and transitions to transitions, and hence it must be a pair
〈f, g〉 of maps f : S −→ S′ and g : T −→ T ′. In addition, it must also
preserve the structure of the presets and postsets of the transitions of the
nets. This is achieved by demanding that the following diagrams commute.

T �S⊗i

T ′ �S′⊗i′� �

g f̄

T �S⊗o

T ′ �S′⊗o′� �

g f̄

Here f̄ is the free monoid homomorphic extension of the map a �→ f(a),
for all a ∈ S. We want to point out that the composition is just the compo-
nentwise compositions, that is, 〈f, g〉 ◦ 〈f ′, g′〉 = 〈f ◦ f ′, g ◦ g′〉.

We next define the category RelPetri of relational Petri nets, which gives
a simple algebraic description of the traditionally defined Petri nets.

Definition 2.4. A relational Petri net is a pair N = (S⊗, R), where S⊗

is the set of all finite multisets over a set S and R is a binary relation on
S⊗.

The objects in the category RelPetri are Petri nets as defined in Defini-
tion 2.4. A morphism f : (S⊗, R) −→ (S′⊗, R′) is a monoid homomorphism
f : S⊗ −→ S′⊗ such that (1) f maps S = {a | a ∈ S} to S′ = {a′ | a′ ∈ S′},
and (2) f preserves the relation R, that is, if mR n in S⊗, then f(m)R′f(n)
in S′⊗.
We remark the only difference between the categories Petri and RelPetri is
that there are no distinct transitions in RelPetri with the same preset and
postset. It is also worth mentioning that the categories Petri and RelPetri
are connected by an adjunction. We omit the proof of this fact, but show in
the next section that Petri and a useful subcategory of RelPetri are linked
by an adjunction.

3. Preordered Petri Nets

In this section, we consider the full subcategory PreoPetri of RelPetri whose
objects are defined in Definition 3.1. The main result of this section is
Theorem 3.3 below which asserts that the categories Petri and PreoPetri
are connected via an adjunction. This result is crucial in linking net and
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quantale semantics of linear logic, and is used to characterize the quantales
arising in net semantics.

Definition 3.1. A preordered Petri net is a pair N = (S⊗,�), where
S⊗ is the set of all finite multisets over a set of places S and � is a preorder
on S⊗ that is compatible with the + operation on S⊗, that is, if a � b, then
(a + c) � (b + c), for all a, b, c ∈ S⊗.

We proceed with the definition of two functors R : Petri −→ PreoPetri
and Π : PreoPetri −→ Petri.

The object part of the functor R is defined in three steps:

1. Given (S, T, i, o) in Petri, let R be the binary relation on S⊗ defined
by R = {(i(t), o(t)) | t ∈ T}.

2. Define a second binary relation W on S⊗ as follows:

(m,m′) ∈ W iff ∃ (a, b) ∈ R such that a ≤ m and a + m′ = b + m

3. Let � be the reflexive and transitive closure of W , and define
R(S, T, i, o) = (S⊗,�).

Obviously R ⊆ W ⊆ �, and it is easy to verify that the preorder � on
S⊗ coincides with the reachability relation in [3].

If 〈f, g〉 : (S, T, i, o) −→ (S′, T ′, i′, o′) is a morphism in Petri, then de-
fine R(〈f, g〉) = f̄ as the free monoid homomorphic extension of the map
a �→ f(a), for all a ∈ S.

Conversely, given (S⊗,�) in PreoPetri, let Π(S⊗,�) = (S,�, π1, π2),
with π1, π2 :�−→ S⊗ being the projection maps. Clearly Π has the correct
co-domain at the object level.

Given a morphism f : (S⊗,�) −→ (S′⊗,�′) in PreoPetri, let Π(f) =
〈h, g〉, where h : S −→ S′ is the map defined by h(a) = b if and only if
f(a) = b, and g :�−→�′ is defined as g(m,n) = (f(m), f(n)). Since f
is monotone, Π(f) is a map from Π(S⊗,�) to Π(S′⊗,�′). The proof of
Theorem 3.3 will be preceded by a useful lemma.

Lemma 3.2. Let (S⊗,�) be in PreoPetri. Then R(Π(S⊗,�)) = (S⊗,�).

Proof. Let (S⊗,�) ∈ PreoPetri, and let Π(S⊗,�) = (S,�, π1, π2). We
construct R(S,�, π1, π2) = (S⊗,�′) using the three–step definition above.
The first step yields (S⊗, R), where R = {(π1(t), π2(t)) | t ∈�} =�. So, all
we have to show is that the last two steps will not change �. First, we check
the second relation W .
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∀m,m′ ∈ S⊗, m W m′ iff

∃a, b ∈ S⊗ such that a � b, a ≤ m and a + m′ = b + m

We wish to show that � = W . Clearly � ⊆ W , since whenever a � b,
the relation a ≤ a implies a + b = b + a. Conversely, if m W m′, then there
exist a, b ∈ S⊗ such that a � b, a ≤ m and a + m′ = b + m. But a ≤ m
implies that there exists n ∈ S⊗ such that m = a + n (just let n = m − a),
and hence m′ = b + m − a = b + n. But because � is compatible with +,
(a + n) � (b + n) for any n, and hence, m � m′. Finally, since � is already
reflexive and transitive, we have �′ =�, and R(Π(S⊗,�)) = (S⊗,�).

Theorem 3.3. The assignments R : Petri −→ PreoPetri and
Π : PreoPetri −→ Petri form an adjunction.

Proof. We start the proof by showing that Π and R are functors. To begin
with, we already mentioned that Π is well-defined at the object level. As for
the morphisms, let f : (P⊗,�) −→ (P ′⊗,�′) be a morphism in PreoPetri.
Then Π(f) = 〈h, g〉 (see definition above) is a morphism in Petri, in view of
the equalities f(πi(m,n)) = πi(f(m), f(n)) = πi(g(m,n)), for all (m,n) ∈�
and i = 1, 2.

Next, we consider R. First we need to show that given (S, T, i, o) in
Petri, R(S, T, i, o) = (S⊗,�) is in PreoPetri. Here � is constructed in three
steps as defined above and is already a preorder. It remains to show that
� is compatible with +. Let R and W be the binary relations defined as
above. We only need show that W is compatible with +, since then clearly
its reflexive and transitive closure will also be compatible with the operation
+. Suppose m W m′ for some m,m′ ∈ S⊗. By the definition of W , there
exists (a, b) ∈ R, such that a ≤ m and a + m′ = b + m. If n ∈ S⊗, then
clearly a ≤ m+n and a+(m′ +n) = b+(m+n). Thus, (m+n)W (m′ +n)
for all n ∈ S⊗, showing that W is compatible with +.

For the morphisms, let 〈f, g〉 : (S, T, i, o) −→ (S′, T ′, i′, o′) be a mor-
phism in Petri, R(S, T, i, o) = (S⊗,�) , R(S′, T ′, i′, o′) = (S′⊗,�′), and
R,R′,W,W ′ be the corresponding binary relations on S⊗ and S′⊗ respec-
tively. Since f̄ = R(〈f, g〉) is already a monoid homomorphism by definition,
we only have to show that it is monotone, equivalently, that it preserves the
relations W and W ′. We first show that f̄ preserves the relations R and R′.
Let mRn. There exists t ∈ T such that m = i(t) and n = o(t). By the
commutativity of the diagram above, f̄(m) = i′(g(t)) and f̄(n) = o′(g(t));
hence f̄(m)R′ f̄(n). We next show that f̄ preserves the relations W and
W ′. Suppose m,m′ ∈ S⊗ and mWm′. Then there exist a, b ∈ S⊗ such
that aR b, a ≤ m and a + m′ = b + m. It follows that f̄(a)R′ f̄(b) and
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f̄(a) + f̄(m′) = f̄(b) + f̄(m). Note that f̄(a) ≤ f̄(m). Indeed a ≤ m implies
that there exists n ∈ S⊗ such that m = a + n. Thus f̄(m) = f̄(a) + f̄(n)
and f̄(a) ≤ f̄(m). We have shown that f̄(m)W ′ f̄(m′). The remaining
categorical properties are easily checked.

We now prove that the pair (R,Π) forms an adjunction. Let (S, T, i, o)
be in Petri, R(S, T, i, o) = (S⊗,�), and (S,�, π1, π2) = Π(S⊗,�). If
η : T −→� is the map defined by η(t) = (i(t), o(t)), and id is the iden-
tity map on S, then it is easily seen that 〈id, η〉 : (S, T, i, o) −→ (S,�
, π1, π2) is a morphism in Petri. Now let (P⊗,�′) be in PreoPetri, (P,�′

, π1, π2) = Π(P⊗,�′), and 〈f, g〉 : (S, T, i, o) −→ (P,�′, π1, π2) be a mor-
phism in Petri. We need to show that there exists a unique morphism
〈̂f, g〉 : (S⊗,�) −→ (P⊗,�′) such that the following diagram commutes.

(S, T, i, o) (S,�, π1, π2)�〈id, η〉

(P,�′, π1, π2)

Π(〈̂f, g〉)

�

�
�

�
�

�
�

��

〈f, g〉

First, let 〈̂f, g〉 = R(〈f, g〉) = f̄ . In view of Lemma 3.2, 〈̂f, g〉 is a
morphism from R(S, T, i, o) = (S⊗,�) to R(P,�′, π1, π2) = (P⊗,�′).

Now clearly Π(〈̂f, g〉) = Π(f̄) = 〈f, ĝ〉, where ĝ :�−→�′ is defined by
ĝ(m,n) = (f̄(m), f̄(n)). We have to show that 〈f, ĝ〉◦〈id, η〉 = 〈f ◦id, ĝ◦η〉 =
〈f, g〉, or ĝ ◦ η = g. For t ∈ T, ĝ ◦ η(t) = ĝ(i(t), o(t)) = (f̄(i(t)), f̄ (o(t))). On
the other hand, since 〈f, g〉 is a morphism in Petri, π1(g(t)) = f̄(i(t)), and
π2(g(t)) = f̄(o(t)). It follows that ĝ ◦ η(t) = g(t), and hence ĝ ◦ η = g, as
was to be shown. The uniqueness of 〈̂f, g〉 is clear because if there exists a
morphism h : (S⊗,�) −→ (P⊗,�′) such that Π(h) ◦ 〈id, η〉 = 〈f, g〉, then h
has to agree with f̄ on the generators of S⊗, hence they must be equal.

4. Partially Ordered Monoids

This auxiliary section connects the category PreoPetri with the familiar
category PoMon of partially ordered monoids and monotone monoid ho-
momorphisms. The category PoMon provides the last link for the chain
of adjunctions between Petri and SCohQuant and serves as an intermediate
step for canonically associating Petri nets with quantales. In light of the
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results of the last section, PoMon is the most convenient category for ab-
stracting the Engberg-Winskel correspondence in a purely algebraic setting.

A partially ordered monoid is a system (M, ·,1,≤) consisting of a (com-
mutative) monoid (M, ·,1) and a partial order ≤ on M which is compatible
with the monoid operation. We shall denote a partially ordered monoid by
(M,≤), or even by M if there is no danger of confusion.

It is clear that PreoPetri is a subcategory of the category of preordered
sets with monotone maps. There exists a well-known functor from the cat-
egory of preordered sets with monotone maps to the category of partially
ordered sets with monotone maps. We show that this functor induces a
functor M : PreoPetri −→ PoMon . For any (S⊗,�) in PreoPetri, let
≡S⊗ be the equivalence relation associated with � : a ≡S⊗ b iff a � b and
b � a. The relation ≡S⊗ is a monoid congruence, since � is compatible
with the monoid operation ·. Therefore S⊗/ ≡S⊗ is a partially ordered
monoid with the binary operation defined by [a] · [b] = [a · b], and the
partial order by [a] ≤ [b] ⇐⇒ a � b. Given (S⊗,�) in PreoPetri, let
M(S⊗,�) = (S⊗/ ≡S⊗,≤). Given f : (S⊗,�) −→ (S′⊗,�), a morphism
in PreoPetri, let M(f) : (S⊗/ ≡S⊗ ,≤) −→ (S′⊗/ ≡S′⊗ ,≤) be defined by
M(f)([a]) = [f(a)], for all a ∈ S⊗. It is easy to see that the preceding
assignments define a functor M : PreoPetri −→ PoMon .

Conversely, we define a functor N : PoMon −→ PreoPetri as follows.
First, recall that given any set M , M⊗ is the free monoid over M , so if in
addition M is already a monoid, there exists a natural monoid epimorphism
γM : M⊗ −→ M extending the map a �→ a(a ∈ M). Given (M,≤) in the
category PoMon , let N (M,≤)= (M⊗,�), with � being defined by

m1 � m2 ⇐⇒ γM (m1) ≤ γM (m2), ∀m1,m2 ∈ M⊗.

The relation � is clearly a preorder and compatible with + on M⊗, since
γM is a monoid homomorphism. As for the morphisms, if f : M −→ N is
a morphism in PoMon , let N (f) : (M⊗,�) −→ (N⊗,�′) be the monoid
homomorphic extension of the map a �→ f(a), for all a ∈ M . It is easy
to see that N (f) is a morphism in PreoPetri. Indeed, note that f ◦ γM =
γN◦N (f), and hence m � n in M⊗ ⇐⇒ γM (m) ≤ γM (n) =⇒ f(γM (m)) ≤
f(γM(n)) ⇐⇒ γN (N (f)(m)) ≤ γN (N (f)(n)) ⇐⇒ N (f)(m)) �′ N (f)(n)
in N⊗.

Theorem 4.1. The functor M : PreoPetri −→ PoMon is a left adjoint to
the functor N : PoMon −→ PreoPetri.

Proof. Let (P⊗,�) ∈ PreoPetri, (Q,≤) = M(P⊗,�) = (P⊗/ ≡P⊗ ,≤
), (M,≤) ∈ PoMon , N (M,≤) = (M⊗,�′′). Consider a morphism
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f : (P⊗,�) −→ (M⊗,�′′) in PreoPetri. We need to find a morphism ηP⊗ :
(P⊗,�) −→ N (M(P⊗,�)) and a unique morphism f̂ : (Q,≤) −→ (M,≤)
such that the following diagram commutes.

(P⊗,�) N (M(P⊗,�))�
ηP⊗

(M⊗,�′′)

N (f̂)

�

�
�

�
�

�
�

���

f

To this end, let N (M(P⊗,�)) = N (Q,≤) = (Q⊗,�′), and let ηP⊗ :
(P⊗,�) −→ (Q⊗,�′) be the monoid homomorphic extension of the map
p �−→ [p] (p ∈ P ). By definition, ηP⊗ is a monoid homomorphism. To show
that it is monotone, let m,n ∈ P⊗ such that m � n. Note that γQ◦ηP⊗ = π,
where π : (P⊗,�) −→ (Q,≤) is the canonical projection. It follows that
γQ(ηP⊗(m)) ≤ γQ(ηP⊗(n)), and hence, ηP⊗(m) �′ ηP⊗(n), by the definition
of �′. We have shown that ηP⊗ is a morphism in PreoPetri. Next, let
f̂ : (Q,≤) −→ (M,≤) be defined by f̂([r]) = γM ◦ f(r), for all r ∈ P⊗. We
show that f̂ is well-defined. Let r, s ∈ P⊗ such that [r] = [s]. Then r � s and
s � r. It follows that γM (f(r)) ≤ γM (f(s)) and γM (f(s)) ≤ γM (f(r)), since
f and γM are monotone. Thus, γM (f(s)) = γM (f(r)), by antisymmetry.

Next, note that if p ∈ P , then f̂([p]) = f(p). Indeed, since f maps
{p | p ∈ P} to {q | q ∈ M}, there exists q ∈ M such that f(p) = q. It
follows that f̂([p]) = γM (f(p)) = γM (q) = q = f(p). Now recall that

N (f̂) : (Q⊗,�′) −→ (M⊗,�′′) is the monoid homomorphism extending the
map [m] �→ f̂([m]). Hence for each generator p of P⊗, N (f̂)(ηP⊗(p)) =
N (f̂)([p]) = f̂([p]) = f(p). It follows that N (f̂) ◦ ηP⊗ = f , establishing the

commutativity of the diagram. The uniqueness of f̂ is obvious since if there
exists g : (Q,≤) −→ (M,≤) such that N (g) ◦ ηP⊗ = f , then g and f̂ agree
on the generators of P⊗, so they must be equal.

5. Strongly Coherent Quantales

In this section, we settle the first two questions raised in Section 1. We
start by showing in Theorem 5.1 that the categories PoMon and Quant are
linked by an adjunction. A complete answer to the second question raised in



206 C. Tsinakis and H. Zhang

Section 1 is provided by Theorem 5.2, which asserts that the categories Petri
and Quant are linked by an adjunction. This result is a direct consequence
of Theorem 5.1 and the adjunctions of Sections 3 and 4. The adjunction
between Petri and Quant restricted at the object level, provides a canonical
way for associating a net to a given quantale, and demonstrates the deep
connection between Petri nets and quantales. The answer to the first ques-
tion is provided by Theorem 5.7, which describes abstractly the quantales
arising in net semantics as the strongly coherent quantales, that is, those
quantales whose join-prime elements form a submonoid that order gener-
ates the quantale. The proof of this result is based on the fact (see Lemma
5.6) that the left adjoint of the adjunction between Petri and SCohQuant
is dense. Lemma 5.6 will also be important for establishing in Section 6.3
the equivalence of the categories Petri, PreoPetri, and PoMon as models of
linear logic.

A quantale Q is a system Q = (Q,∨,⊥, ◦,1) satisfying the following
properties.

1. (Q,∨,⊥) is a complete join-semilattice with least element ⊥;

2. (Q, ◦,1) is a monoid; and

3. The following distributive law holds:

a ◦
∨

D =
∨

{a ◦ b | b ∈ D},∀ a ∈ Q,∀ D ⊆ Q.

In what follows, we shall denote a quantale Q by its carrier Q. A quantale
is evidently a complete lattice, with the meet operation and the greatest
element denoted, respectively, by ∧ and �. We remark that the distributive
law above is equivalent to the existence of a binary operation −◦ on Q
satisfying a ◦ b ≤ c ⇐⇒ b ≤ a−◦c, for all a, b, c ∈ Q. We shall refer to the
operation −◦ as the residual of ◦.

A map between two complete join-semilattices is said to be linear if it
preserves all joins. A quantale homomorphism is a linear monoid homo-
morphism. A closure (coclosure) operator on a quantale Q is a monotone
map r on Q satisfying a ≤ r(a) (r(a) ≤ a) and r(r(a)) = r(a), for all
a ∈ Q. A quantic nucleus on Q is a closure operator r on Q such that
r(a) ◦ r(b) ≤ r(a ◦ b), for all a, b ∈ Q.

The category of quantales and quantale homomorphisms will be denoted
by Quant.

It is simple to verify that the forgetful functor U : Quant −→ PoMon
has a left adjoint D : PoMon −→ Quant. Given P in PoMon , we let
D(P ) be the complete join-semilattice of down sets of P . That is, D(P ) =
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{A ∈ ℘(P ) |A =↓ A}. Arbitrary joins and meets in D(P ) are unions and
intersections, respectively. It was noted in [7] that the map α defined by
α(A) =↓ A, for all A ∈ ℘(P ), is a quantic nucleus. Hence, D(P ), being
the image of α, can be made into a quantale with multiplication defined
by A ◦′ B =↓ (A ◦ B), for all A,B ∈ D(P ) (see Theorem 3.1.1 of [12]).
Also, if f : D −→ E is a morphism in PoMon , then it is easily checked
that D(f) : D(P ) −→ D(E), defined by D(f)(A) =↓ f(A), is a quantale
homomorphism.

Theorem 5.1. The functor D : PoMon −→ Quant is the left adjoint of
the forgetful functor U : Quant −→ PoMon .

Proof. Throughout the proof, we will suppress the use of the symbol U .
Let P be a partially ordered monoid, Q be a quantale, and f : P −→ Q be
a morphism in PoMon . We need to find a morphism ηP : P −→ D(P ) in
PoMon and a unique quantale homomorphism f̂ : D(P ) −→ Q such that
the following diagram commutes.

P D(P )�
ηP

Q

f̂

�

�
�

�
�

�
�

�
��

f

Here ηP is defined by ηP (a) =↓ a, for all a ∈ P . It is clear that ηP is
a morphism in PoMon . Indeed, ηP is obviously monotone. Furthermore,
ηP (ab) =↓(ab) =↓(↓a ◦ ↓b) =↓a ◦′ ↓b, for all a, b ∈ P . Next, let f̂ be
defined by f̂(A) =

∨
f(A) =

∨{f(a) | a ∈ A}. We need to show that f̂ is a
quantale homomorphism from D(P ) to Q. First, it is easily checked that f̂
is well-defined, linear and preserves the unit (f̂(↓1) = 1). It also preserves
multiplication, since for all A,B ∈ D(P ),

f̂(A ◦′ B) =
∨

f(↓(A ◦ B))

=
∨

f(A ◦ B)

=
∨

{f(a ◦ b) | a ∈ A, b ∈ B}
=

∨
{f(a) ◦ f(b) | a ∈ A, b ∈ B}

=
∨

a∈A

{
∨

b∈B

f(a) ◦ f(b)}
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=
∨

a∈A

{f(a) ◦
∨

f(B)}

=
∨

f(A) ◦
∨

f(B)

= f̂(A) ◦ f̂(B).

Observe now that for all a ∈ P , f̂(ηP (a)) = f̂(↓ a) =
∨

f(↓ a) = f(a).
So f̂ ◦ ηP = f . For the uniqueness of f̂ , suppose there exists a quantale
homomorphism g : D(P ) −→ Q such that g ◦ ηP = f , then g(↓a) = f(a) =
f̂(↓ a), for all a ∈ P . Thus g(A) = g(

⋃{↓ a | a ∈ A} =
∨{g(↓ a) | a ∈ A} =∨{f̂(↓ a) | a ∈ A} = f̂(

⋃{↓ a | a ∈ A} = f̂(A), for all A ∈ D(P ). Hence,
g = f̂ .

The diagram below describes the main sequence of the adjunctions stud-
ied in this paper.

Petri �
� PreoPetri
R
Π

�
� PoMon
M
N

�
� Quant
D
U

Combining Theorems 3.3, 4.1, and 5.1, we obtain the following result
relating Petri nets and quantales.

Theorem 5.2. The functor D ◦M◦R : Petri −→ Quant is the left adjoint
of the functor Π ◦ N ◦ U : Quant −→ Petri.

The remainder of this section is occupied with the proof of Theorem 5.7.
Let us recall that in a complete lattice L, an element p is a completely

join prime if p 
= ⊥ and for all A ⊆ L,the relation p ≤ ∨
A implies the

existence of a ∈ A such that p ≤ a. The set of all completely join primes
of L is denoted by CJP(L). We say that CJP(L) order generates L if
for all a ∈ L, a =

∨
(↓a

⋂ CJP(L)). Such a lattice is an algebraic and
dually algebraic distributive lattice (see, for example, p. 83 of [2]). In
particular, it is a frame, that is, it satisfies the join-infinite distributive law
a ∧ ∨

D =
∨{a ∧ b | b ∈ D}.

Definition 5.3. A quantale Q is said to be strongly coherent if CJP(Q)
is a submonoid of Q that order generates Q.

Let SCohQuant be the full subcategory of Quant whose objects are
strongly coherent quantales. It is clear that for every partially ordered
monoid P , the quantale D(P ) is strongly coherent, with CJP(D(P )) =
{↓ a | a ∈ P}. Thus, the adjunction in Theorem 5.1 may be viewed as an
adjunction between the categories PoMon and SCohQuant, and the main
sequence of adjunctions takes the following form.
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Petri �
� PreoPetri
R
Π

�
� PoMon
M
N

�
� SCohQuant
D
U

Lemma 5.6 below asserts that all compositions of left adjoints, in the
picture above, with co-domain SCohQuant are dense. We recall the concept
of a dense functor, and note that compositions of dense functors are again
dense.

Definition 5.4. A functor G : D −→ E is said to be dense if for every
object B in the category E, there exists an object A in the category D such
that G(A) is isomorphic to B.

In what follows, we extend the definition of D so that it applies on
preordered monoids as well. That is, if P is a preordered monoid, then D(P )
is the set of down sets of D. As in the case of a partial order, D(P ) is a
complete join-semilattice whose joins and meets are unions and intersections,
respectively. Moreover, the multiplication A ◦′ B =↓ (A ◦ B), for all A,B ∈
D(P ), makes it into a strongly coherent quantale. A significant observation
for our purposes is the following result.

Lemma 5.5. If (P,�) be a preordered monoid, then the strongly coherent
quantales D(P ) and D(P/ ≡P ) are isomorphic. Here ≡P is the standard
congruence associated with �. It is defined by a ≡P b iff a � b and b � a,
for all a, b ∈ P .

Proof. We leave to the reader to verify that the map θ : D(P ) −→ D(P/≡P

), defined by θ(A) = {[a] | a ∈ A}, is a quantale isomorphism from D(P ) to
D(P/≡P ).

Lemma 5.6. The functors D, D ◦M, and D ◦M ◦R are dense.

Proof. We begin by showing that the functors R and D are dense. The
functor R is dense by Lemma 3.2. The density of D follows from the fact
that for each object Q ∈ SCohQuant, the map λQ : D(CJP(Q)) −→ Q,
defined by λQ(A) =

∨
A, is a quantale isomorphism. Indeed, since CJP(Q)

order generates Q, λQ is an order isomorphism, and hence linear. It is also
clear that λQ preserves the 1. Finally, for A,B ∈ D(CJP(Q)),

λQ(A ◦ B) = λQ(
⋃

{↓a◦ ↓b | a ∈ A, b ∈ B})
=

∨
{λQ(↓a◦ ↓b) | a ∈ A, b ∈ B}

=
∨

{
∨

(↓a◦ ↓b) | a ∈ A, b ∈ B}
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=
∨

{a ◦ b) | a ∈ A, b ∈ B}
=

∨
A ◦

∨
B

= λQ(A) ◦ λQ(B).

This completes the proof that λQ is an isomorphism.
Next, since D(CJP(Q)) ∼= Q, for every Q ∈ SCohQuant, to show that

D ◦M is dense, it will suffice to show that, if (M,≤) is a partially ordered
monoid, then D(M) ∼= D(M(N (M))) = D(M⊗/ ≡M⊗). In light of Lemma
5.5, we already have that D(M⊗) ∼= D(M⊗/ ≡M⊗), and hence we need
to establish the isomorphism D(M) ∼= D(M⊗). Let γM : M⊗ −→ M be
the monoid epimorphism satisfying γM (a) = a, for all a ∈ M . Recall that
the order � on M⊗ is defined by m1 � m2 ⇐⇒ γM (m1) ≤ γM (m2),
for all m1,m2 ∈ M⊗. Now, define the map θM : D(M⊗) −→ D(M) by
θM(A) = γM (A) = {γM (a) | a ∈ A} for any A ∈ D(M⊗). First, θM is
well-defined, meaning that γM (A) is in D(M⊗). Indeed, if x ≤ γM (a) for
some a ∈ A, then x = γM (x) ≤ γM (a). Hence x � a, and x ∈ γM (A).
A direct check shows that θM is a quantale epimorphism. We show θM is
injective, and hence a quantale isomorphism between D(M) and idl(M⊗).
Let A,B ∈ D(M⊗) with θM(A) = θM (B). For every a ∈ A, there exists
b ∈ B such that γM (a) = γM (b), and hence a � b. This yields the relations
a ∈ B and A ⊆ B. By symmetry, B ⊆ A, and hence A = B. We have
established the injectivity of θM and the density of the functor D ◦M.

Lastly, D ◦M ◦R is dense, since D ◦M and R are dense.

Lemma 5.6 directly implies the final and main result of this section.

Theorem 5.7. The quantales arising in net semantics are the strongly co-
herent quantales. More specifically, given a strongly coherent quantale Q,
there exists a Petri net N = (S, T, F ) such that Q is isomorphic to the
quantale D(S⊗) of down sets of (S⊗,�), where � is the reachability relation
on the markings S⊗ of N . N may be taken to be the net Π ◦ N ◦ U(Q).

6. Free Quantales with Operators

The objective of this section is to provide an affirmative answer to the third
question raised in Section 1, by introducing the category FrQuantOp that
permits an internal interpretation of linear logic in Petri. In particular, the
use of linear quantic nuclei on free quantales provides an alternative way
for viewing the correspondence between Petri nets and strongly coherent
quantales.
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Let Mon denote the category of monoids and monoid homomorphisms.
Obviously, there is a forgetful functor U from Quant to Mon that forgets
the lattice structure and join preserving property of the morphisms. On
the other hand, given a monoid M , there is a canonical way to construct a
quantale ℘(M) with lattice structure the power set of M and multiplication
◦ defined as A ◦ B = {ab | a ∈ A, b ∈ B}, for all A,B ∈ ℘(M). For each
monoid homomorphism f : M −→ N , let ℘(f) : ℘(M) −→ ℘(N) be defined
by ℘(f)(A) = f(A), for all A ⊆ M . It is a well-known fact, and easy to
verify, that the preceding assignments define a functor ℘ : Mon −→ Quant
that is a left adjoint to the forgetful functor U : Quant −→ Mon. We also
note that for any set P, ℘(P⊗) is the free quantale generated by P .

In Section 3, we defined the category PreoPetri of preordered Petri nets,
whose objects are preordered free monoids, and the morphisms are mono-
tone monoid homomorphisms. We wish to relate PreoPetri to some category
of free quantales with a single operator. Besides being free quantales, the
objects must reflect the preorder on the side of the Petri nets. We define
FrQuantOp to be the category, whose objects are pairs in the form (Q,α),
with Q a free commutative quantale and α a linear quantic nucleus on Q.
Every free quantale is isomorphic to ℘(P⊗), for some set P , and hence we
shall always write an object in FrQuantOp in the form (℘(P⊗), α). The def-
inition of the morphism in FrQuantOp is more involved. Let (℘(P⊗), α) and
(℘(S⊗), β) be objects in FrQuantOp. A map f : (℘(P⊗), α) −→ (℘(S⊗), β)
is a morphism in FrQuantOp if:

1. f is a quantale homomorphism from ℘(P⊗) to ℘(S⊗);
2. f maps singletons to singletons; and
3. f ◦ α ≤ β ◦ f .

Let ℘ be the assignment from PreoPetri to FrQuantOp defined as
follows. If (P⊗,�) is in PreoPetri, let ℘(P⊗,�) = (℘(P⊗), α), with α :
℘(P⊗) −→ ℘(P⊗) defined by α(A) =↓A = {p ∈ P⊗ | p � a,∃ a ∈ A}, for
all A ∈ ℘(P⊗). If f : (P⊗,�p) −→ (S⊗,�s) is a morphism in PreoPetri,
let ℘(f) : (℘(P⊗), α) −→ (℘(S⊗), β) be defined by ℘(f)(A) = f(A), for all
A ∈ ℘(P⊗).

Next, let N0 be the assignment from FrQuantOp to PreoPetri defined
as follows. If (℘(P⊗), α) is in FrQuantOp, let N0(℘(P⊗), α) = (P⊗,�α),
with m �α n ⇐⇒ α({m}) ⊆ α({n}), for all m,n ∈ P⊗. Moreover, if
g : (℘(P⊗), α) −→ (℘(Q⊗), β) is a morphism in FrQuantOp, let N0(g) :
(P⊗,�α) −→ (Q⊗,�β) be the map from P⊗ to Q⊗, defined by N0(g)(m) =
n, if g({m}) = {n}, for all m ∈ P⊗ and n ∈ Q⊗. Clearly N0(g)(m) =
N0(g)(n) ⇐⇒ g({m}) = g({n}), for all m ∈ P⊗, n ∈ Q⊗.
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Theorem 6.1. The assignment ℘ : PreoPetri −→ FrQuantOp is an isomor-
phism with inverse N0 : FrQuantOp −→ PreoPetri.

Proof. We first show that ℘ is a functor. If (P⊗,�) is in PreoPetri, let
℘(P⊗,�) = (℘(P⊗), α), where α is defined as above. We need to prove that
α is a quantic nucleus. It is clear that α is a linear closure operator. Hence,
it remains to show that α(A) ◦ α(B) ⊆ α(A ◦ B), or ↓A ◦ ↓B ⊆↓ (A ◦ B).
Now m ∈↓A ◦ ↓B implies the existence of a ∈ A, b ∈ B, c, d ∈ P⊗, such
that m = c + d, c � a, and d � b. It follows, since � is compatible with +,
that m = c + d � a + b, showing that m ∈↓(A ◦ B).

If f : (P⊗,�p) −→ (S⊗,�s) is a morphism in PreoPetri, then ℘(f) is
clearly a quantale homomorphism that maps singletons to singletons. We
need to check the inequality f ◦α ≤ β◦f , or f(↓A) ⊆↓f(A). Let x ∈ f(↓A).
There exist a ∈ A and m ∈ P⊗, such that m �p a, and x = f(m). Since
f preserves the preorders, x �s f(a), and x ∈↓ f(A). We have shown that
f ◦ α ≤ β ◦ f . The remaining categorical properties of ℘ are easily checked.

We next show that N0 is a functor. For (℘(P⊗), α) in FrQuantOp, let
N0(℘(P⊗), α) = (P⊗,�α), with �α defined as above. Clearly �α is a pre-
order. If m,n, t ∈ P⊗ and m �α n, then m + t ∈ {m + t} = {m} ◦ {t} ⊆
α({m}) ◦ α({t}) ⊆ α({n}) ◦ α({t}) ⊆ α({n} ◦ {t}) = α({n + t}), since ◦ is
monotone and α is a quantic nucleus. Thus, α({m + t}) ⊆ α({n + t}), using
the fact that α is a closure operator. Thus, m + t �α n + t, showing that
�α is compatible with + in P⊗.

If g : (℘(P⊗), α) −→ (℘(Q⊗), β) is a morphism in FrQuantOp, then
N0(g) is clearly a monoid homomorphism. We only need to show that N0(g)
preserves the preorder. If m �α n in (P⊗,�α), then by the definition of
�α, α({m}) ⊆ α({n}), and hence {m} ⊆ α({n}), since α is a closure opera-
tor. But then, g({m}) ⊆ g(α({n})) ⊆ β(g({n})), which yields β(g({m})) ⊆
β(g({n})), or N0(g)(m) �β N0(g)(n). Again the remaining categorical prop-
erties of N0 are easily verified. Thus N0 : FrQuantOp −→ PreoPetri is a
functor.

We next show that the functors ℘ and N0 are mutually inverse isomor-
phisms, by showing that N0 ◦ ℘ = idPreoPetri and ℘ ◦ N0 = idFrQuantOp.

First, let (P⊗,�) be in PreoPetri. Then N0(℘(P⊗,�)) = (P⊗,�α),
where �α is defined by m �α n iff ↓m ⊆↓n. This is evidently equivalent to
m � n, and hence, (P⊗,�) = N0(℘(P⊗,�)).

Next, let (℘(P⊗), α) be an object in the category FrQuantOp. Then
℘(N0(℘(P⊗), α)) = (℘(P⊗), α′), where α′ is defined as α′(A) =
{m ∈ P⊗ |m �α a,∃ a ∈ A}, for all A ∈ ℘(P⊗). We have to show that
α′(A) = α(A). Let m ∈ α(A). Now α(A) = α(

⋃
a∈A{{a}}) =

⋃
a∈A α({a}),
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since α preserves arbitrary joins, and hence, m ∈ α({a}), for some a ∈ A.
It follows that m �α a, or m ∈ α′(A). Conversely, if m ∈ α′(A), then
m ∈ α({a}) for some a ∈ A. So m ∈ α({a}) ⊆ α(A), as α is monotone.
Therefore α′ = α, and hence, (℘(P⊗), α) = ℘(N0(℘(P⊗), α).

Order-Semantics of Linear Logic

We start this section with a brief review of intuitionistic linear logic. Then
we show that the categories Petri, PreoPetri, and PoMon provide interpre-
tations of linear logic equivalent to net semantics. The equivalence of the
interpretations is established with the use of Lemma 5.6 which asserts that
the compositions of left adjoints with co-domain SCohQuant are dense. We
also outline in Section 6.2 how the objects in FrQuantOp may be viewed as
models of the logic, and leave to the reader to verify the equivalence of this
interpretation and net semantics.

It follows from the considerations of the present section that net se-
mantics is equivalent to a restricted form of SCohQuant-semantics. More
specifically, unlike quantale semantics, values of the formulas in restricted
SCohQuant-semantics are limited to those that extend the assignments of
atomic propositions to completely join-prime elements of the strongly co-
herent quantale. It is of interest to inquire whether there is a category C of
quantales for which C-semantics is equivalent to net semantics. The category
SCohQuant is, of course, a natural candidate for such a category.

6.1. Linear Logic

Linear logic, introduced by Girard in [5], has attracted considerable attention
because of its potential applications in parallel and distributive computing.
Intuitionistic linear logic is one of the variants of linear logic. We refer the
reader to [13] for additional information concerning this and other variants
of linear logic. The major difference between intuitionistic linear logic and
traditional intuitionistic logic is the controlled use of the two structural rules
contraction and weakening, and the introduction of the connectives ⊗ (with
unit 1) and !. The traditional conjunction and disjunction are denoted by &
(with unit �) and ⊕ (with unit ⊥). The implication −◦ is now called linear
implication. A formula is either an atomic proposition, a logic constant, or
a compound formula constructed using the logical connectives.

Linear logic is usually introduced by Gentzen’s sequent calculus. A se-
quent A1, A2, · · · , An � A of the logic consists of a collection of assumption
formulas A1, A2, · · · , An, a single formula A, and the symbol �, which is read
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as “deduce.” A sequence of assumption formulas is usually denoted by upper
case Greek letters Γ or ∆. The axioms and inference rules of intuitionistic
linear logic are presented below (see also, for example, [3] or [7]). Reverting
to our practice initiated earlier, we shall refer to “intuitionistic linear logic”
as “linear logic.”
Axiom:

A � A
(Identity)

Structural Rules:

Γ, A,B,∆ � C

Γ, B,A,∆ � C
(Exchange)

Γ � A A,∆ � B

Γ,∆ � B
(Cut)

Logical Rules:

� 1
(1-R)

Γ � A

Γ,1 � A
(1-L)

Γ � � (�-R)
Γ,⊥ � A

(⊥-L)

Γ � A ∆ � B

Γ,∆ � A ⊗ B
(⊗-R)

Γ, A,B � C

Γ, A ⊗ B � C
(⊗-L)

Γ � A Γ � B

Γ � A&B
(&-R)

Γ, A � C

Γ, A&B � C

Γ, B � C

Γ, A&B � C
(&-L)

Γ � A

Γ � A⊕B

Γ � B

Γ � A⊕B
(⊕-R)

Γ, A � C Γ, B � C

Γ, A⊕B � C
(⊕-L)

Γ, A � B

Γ � A−◦B (−◦-R)
Γ � A B,∆ � C

Γ, A−◦B,∆ � C
(−◦-L)

!Γ � A

!Γ �!A
(!-R)

Γ, A � B

Γ, !A � B
(Dereliction)

Γ, !A, !A � B

Γ, !A � B
(Restricted Contraction)

Γ � B

Γ, !A � B
(Restricted Weakening)

The so called “of course” operator ! is also referred to as an “exponential”
or “storage” operator. One can think of !A as a storage of A which can
provide unlimited copies of A.
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6.2. Models of Linear Logic

In this subsection we describe the interpretations of linear logic in the cate-
gories Petri, PreoPetri, PoMon , and FrQuantOp.

Definition 6.2. Let Q be in Quant. A coclosure operator ! : Q −→ Q is
said to be a modality over Q (see p.78 of [13]) provided

1. !x ≤ 1, for all x ∈ Q;

2. !1 = 1; and

3. !(x ∧ y) = !x ◦ !y, for all x, y ∈ Q.

Note that clause (3) implies that (!x)2 = !x and !x ◦ !y = !( !x◦ !y), for all
x, y ∈ Q. One can easily check (see p.79 of [13]) that, for a given quantale
Q, the assignment x �→ !x =

∨{y ∈ Q | y ≤ 1∧x, y2 = y} defines a modality
over Q.

Let L be the set of all formulas of the logic. L is the underlying set for
the absolutely free algebra L, corresponding to the connectives of the logic
as function symbols, over the set C of atomic propositions.

L = (L,⊗,−◦,&,⊕, !,1,⊥,�)

The type of any quantale Q with a modality ! may be expanded in an
obvious way to the type of L, if one disregards the infinite nature of joins
and meets. Thus, every assignment f : C −→ Q can be extended to an
L-homomorphism [[-]] : L −→ Q satisfying the following properties, for all
a ∈ C, and A,B ∈ L.

[[�]] = �
[[⊥]] = ⊥
[[1]] = 1
[[a]] = f(a)
[[A ⊗ B]] = [[A]] ◦ [[B]]
[[A&B]] = [[A]] ∧ [[B]]
[[A⊕B]] = [[A]] ∨ [[B]]
[[A−◦B]] = [[A]]−◦[[B]]
[[!A]] = ![[A]]

We refer to the homomorphism [[-]] as a valuation of the logic on (Q, !).
Further, we say that a sequent A1, A2, · · · , An � A is valid in (Q, !) if and
only if [[A1]] ◦ · · · ◦ [[An]] ≤ [[A]] (or 1 ≤ [[A]] if n = 0), for every valuation
[[-]] : L −→ Q. The proof of soundness and completeness of linear logic with
respect to the preceding semantics can be found in [13].
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The discussion in the preceding sections describes how to associate an
object in any one of the categories Petri, PreoPetri, PoMon , or FrQuantOp
to a quantale. Thus, in order to describe the interpretation of linear logic
in each category, we only need to describe the assignment from the set C of
atomic propositions.

Let (P, T, i, o) (or (P⊗,�)) be in Petri (or PreoPetri) with corresponding
quantale D(P⊗) (the quantale of down sets of (P⊗,�)). Let g : C −→ P be
any assignment. Then the assignment f : C −→ D(P⊗) is defined by the
formula f(a) =↓(g(a)).

Similarly if M is in PoMon and g : C −→ M is any assignment, then
the assignment f : C −→ D(M) is defined by f(a) =↓g(a), for all a ∈ C.

If (℘(P⊗), α) is in FrQuantOp, then the interpretation takes place within
the category. For any assignment g : C −→ P , the valuation function
[[-]] : L −→ ℘(P⊗) is the homomorphism corresponding to the assignment
a �→ α({g(a)}). Hence, we have the following, for all a ∈ C, and A,B ∈ L.

[[�]] = P⊗

[[⊥]] = ∅
[[1]] = α({0}), where 0 is the empty multiset over P
[[a]] = α({g(a)})
[[A ⊗ B]] = α([[A]] ◦ [[B]])
[[A&B]] = [[A]] ∩ [[B]]
[[A⊕B]] = [[A]] ∪ [[B]]
[[A−◦B]] = [[A]]−◦[[B]]
[[!A]] =

⋃{[[B]] | [[B]] ⊆ [[1]] ∩ [[A]], α([[B]]2) = [[B]]}

6.3. The Equivalence of the Interpretations of Linear Logic

We formally define the equivalence of classes of models of linear logic as
follows.

Definition 6.3. Let L be the set of formulas of linear logic, and M1, M2

be two classes of models of the logic. We say that M2 is finer than M1 if
for any model M1 in M1 and any valuation function [[-]]1 : L −→ M1, there
exist a model M2 in M2 and a valuation function [[-]]2 : L −→ M2 such that
a sequent is valid in M1 if and only if it is valid in M2. We say that M1

and M2 are equivalent as models of the logic if M1 is finer than M2 and
M2 is finer than M1.

An object H in any one of the categories Petri, PreoPetri, or PoMon,
gives rise to a quantale Q1 in SCohQuant. In light of Lemma 5.6, there
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exists an object K in each of the other categories inducing a quantale Q2 in
SCohQuant isomorphic to Q2. Since the interpretations actually takes place
outside the categories, we need to apply the equivalence definition above with
a slight modification. Namely, we need to check that for every valuation
function [[-]]1 : L −→ Q1 constructed through H, there exists a valuation
function [[-]]2 : L −→ Q2 constructed through K such that a sequent is valid
in Q1 if and only if it is valid in Q2.

Theorem 6.4. The categories Petri, PreoPetri, and PoMon provide equiv-
alent interpretations of linear logic.

Proof. It is clear that Petri and PreoPetri are equivalent, since they induce
the same quantale and the same valuation function.

We next show that PoMon is finer than PreoPetri. Let (M⊗,�) be
in PreoPetri, and let g : C −→ M⊗ be an assignment from the atomic
propositions C to M⊗. Now note that the corresponding valuation function
[[-]]1 : L −→ D(M⊗) extends the map a �→↓g(a) from C to D(M⊗). Consider
the partially ordered monoid M(M⊗,�) = (M⊗/ ≡M⊗,≤) (see Section
4), and the map g′ : C −→ M⊗/ ≡M⊗ , defined by g′(a) = [g(a)], for all
a, b ∈ C. The corresponding valuation function [[-]]2 : L −→ D(M⊗/≡M⊗)
extends the map a �→↓ [g(a)] from C to D(M⊗/≡M⊗). By Lemma 5.5, the
quantales D(M⊗/ ≡M⊗) and D(M⊗) are isomorphic. The isomorphism is
implemented by the map χM⊗ : D(M⊗) −→ D(M⊗/ ≡M⊗), defined by
χM⊗(A) ={[a] | a ∈ A}. Note that the quantale isomorphism χM⊗ preserves
the operations ∧, −◦, and �, and satisfies the equality [[-]]2 = χM ◦ [[-]]1. It
follows that [[-]]1 and [[-]]2 are equivalent, that is, a sequent is valid in D(M⊗)
with respect to [[-]]1 if and only if it is valid in D(M⊗/≡M⊗) with respect to
[[-]]2.

We lastly show that PreoPetri is finer than PoMon. Let (M,≤) be
in PoMon and let N (M,≤) = (M⊗,�) (see Section 4). Recall that if
γM : M⊗ −→ M is the monoid homomorphism satisfying γM (a) = a, for all
a ∈ M , then the order � on M⊗ is defined by m1 � m2 ⇐⇒ γM (m1) ≤
γM (m2), for all m1,m2 ∈ M⊗. Let g : C −→ M be an assignment. The
corresponding valuation function [[-]]1 : L −→ D(M) extends the mapping
a �→↓g(a) from C to D(M). Let g′ : C −→ M⊗ be defined by g′(a) = g(a).
The corresponding valuation function [[-]]2 : L −→ D(M⊗) extends the map
a �→↓ g′(a) =↓ g(a) from C to D(M⊗). It was established in the proof of
Lemma 5.6 that the map θM : D(M⊗) −→ D(M) defined by θM (A) =
γM (A) = {γM (a) | a ∈ A}, is a quantale isomorphism. Furthermore, an easy
check establishes that [[-]]1 = ηM ◦ [[-]]2. Hence, the two valuation functions
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are equivalent, since ηM is a quantale isomorphism. We have shown that
PreoPetri is finer than PoMon , as was to be shown.

It was remarked at the beginning of this section that net semantics is
equivalent to a restricted form of SCohQuant-semantics. The values of the
formulas in restricted SCohQuant-semantics are limited to those that extend
the assignments of atomic propositions to completely join-prime elements of
the strongly coherent quantale. It is clear that this semantics is equivalent
to PoMon -semantics, and hence its equivalence with net semantics follows
from Theorem 6.4.
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