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Abstract.

Our work proposes a new paradigm for the study of various
classes of cancellative residuated lattices by viewing these struc-
tures as lattice-ordered groups with a suitable operator (a conu-
cleus). One consequence of our approach is the categorical equiv-
alence between the variety of cancellative commutative residuated
lattices and the category of abelian lattice-ordered groups endowed
with a conucleus whose image generates the underlying group of
the lattice-ordered group. In addition, we extend our methods
to obtain a categorical equivalence between ΠMTL-algebras and
product algebras with a conucleus. Among the other results of the
paper, we single out the introduction of a categorical framework
for making precise the view that some of the most interesting alge-
bras arising in algebraic logic are related to lattice-ordered groups.
More specifically, we show that these algebras are subobjects and
quotients of lattice-ordered groups in a ”quantale like” category of
algebras.

1. Introduction

In this section, we provide an outline of the contents of the paper.
Definitions of concepts not defined here will be given in subsequent
sections.

A residuated lattice-ordered monoid, or a residuated lattice for short,
is an algebra L = 〈L,∧,∨, ·, \, /, e〉 such that 〈L,∧,∨〉 is a lattice;
〈L, ·, e〉 is a monoid; and for all x, y, z ∈ L,

x · y ≤ z ⇔ x ≤ z/y ⇔ y ≤ x\z.

The elimination of the requirement that a residuated lattice have a
least element has led to the development of a surprisingly rich theory
that includes the study of various important varieties of cancellative
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residuated lattices, such as the variety of lattice-ordered groups. Refer,
for example, to [18], [5], [2], [21] and [8]. These varieties are the focus
of the present paper.

Our work initiates a systematic study of the relationship of cancella-
tive varieties of residuated lattices and lattice-ordered groups. In what
follows, we will use the term conucleus for an interior operator σ on a
lattice-ordered group G that fixes the group identity and whose image
is a submonoid of G. The cornerstone of our work is a categorical
equivalence between a subclass of cancellative residuated lattices and
a category of lattice-ordered groups endowed with a conucleus. More
specifically, let LGcn be the category with objects 〈G, σ〉, consisting of
a lattice-ordered group G augmented with a conucleus σ such that the
underlying group of the lattice-ordered group G is the group of left
quotients of the underlying monoid of σ(G). The morphisms of LGcn

are lattice-ordered group homomorphisms that commute with the des-
ignated conuclei. Let ORL be the category each object of which is
a cancellative residuated lattice whose underlying monoid is a right
reversible monoid. We will refer to these residuated lattices as Ore
residuated lattices. (Recall that a monoid M is right reversible if any
two principal semigroup ideals of M have a non-empty intersection:
Ma ∩Mb 6= ∅, for all a, b ∈ M .) The morphisms in ORL are residu-
ated lattice homomorphisms. Then the categories LGcn and ORL are
equivalent. By prescribing special properties for the conucleus or by
restricting the class of objects, we obtain restricted categorical equiva-
lences between subcategories of LGcn and subcategories of ORL. For
example, if CLGcn is the full subcategory of LGcn consisting of ob-
jects whose first components are abelian lattice-ordered groups, and if
CCanRL is the variety of commutative cancellative residuated lattices,
then CLGcn and CCanRL are equivalent.

To further illuminate the equivalence discussed above, we consider
the category, RL×, whose objects are residuated lattices and whose
morphisms are monoid homomorphisms that are also residuated maps.
Then it will be shown that the objects of ORL are subobjects of lattice-
ordered groups in the category RL×. In particular, the members of
CCanRL encompass all the subobjects of abelian lattice-ordered groups
in the category RL×. This perspective also sheds new light into the
main results in [24], [10] and [12].

Indeed, a fundamental result in the theory of MV-algebras, due to
Mundici [24], is the categorical equivalence between the category of
MV-algebras and the category of unital abelian lattice-ordered groups,
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that is, abelian lattice-ordered groups with a designated strong order
unit. Dvurečenskij generalized, in [10], the Mundici correspondence
to bounded GMV-algebras and arbitrary unital lattice-ordered groups.
Dvurečenskij’s result is subsumed by the following result in [12]. Let
IGMV be the variety of integral GMV-algebras and let LG−

ncl be the
category with objects 〈B, γ〉 consisting of the negative cone, B, of a
lattice-ordered group augmented with a nucleus γ on it whose image
generates B as a monoid. Let the morphisms of these categories be
algebra homomorphisms. Then the categories GMV and LG−

ncl are
equivalent.

It will be shown that the last equivalence allows us to view integral
GMV algebras as the epimorphic images, in RL×, of negative cones of
lattice-ordered groups. MV-algebras and bounded GMV-algebras are
special epimorphic images of negative cones of abelian lattice-ordered
groups and arbitrary lattice-ordered groups, respectively. Hence, some
of the most interesting algebras arising in algebraic logic are either
subobjects of lattice-ordered groups or epimorphic images of negative
cones of lattice-ordered groups in RL×.

Motivated by the preceding facts, we ask whether the results of the
previous sections can be extended to residuated lattices that are not
cancellative. In this setting, an appropriate substitute for the concept
of a lattice-ordered group is that of an involutive residuated lattice.
By employing an embedding result in [26], we show that every residu-
ated lattice with top element is a subobject, in RL×, of an involutive
residuated lattice. It’s an open question at this time as to whether this
correspondence extends to a categorical equivalence.

In the last section of the paper we investigate an application to many-
valued logic. More precisely, we establish a categorical equivalence
between ΠMTL-algebras and product algebras (i.e., divisible ΠMTL-
algebras) with a conucleus which is also a lattice endomorphism and
whose image generates the whole algebra. We show, in particular, that
for any ΠMTL-algebra A there exists a unique – up to isomorphism –
product algebra A∗ such that A ⊆ A∗, A is closed with respect to the
monoid and lattice operations of A∗ and, relative to the implication
→∗ in A∗, every element x ∈ A∗ can be written as x = a →∗ b, for
some elements a, b ∈ A.
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2. Basic Facts

Let P and Q be posets. A map f : P → Q is said to be residuated
provided there exists a map f⋆ : Q → P such that

f(x) ≤ y ⇐⇒ x ≤ f⋆(y),

for all x ∈ P and y ∈ Q. We refer to f⋆ as the residual of f . We note
that f preserves any existing joins and f⋆ preserves any existing meets.

This definition extends to binary maps as follows: Let P, Q and R

be posets. A binary map · : P × Q → R is said to be biresiduated
provided there exist binary maps \ : P × R → Q and / : R × Q → P

such that

xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z,

for all x ∈ P, y ∈ Q, z ∈ R.

We refer to the operations \ and / as the left residual and right
residual of ·, respectively. As usual, we write xy for x · y and adopt
the convention that, in the absence of parenthesis, · is performed first,
followed by \ and /, and finally by ∨ and ∧. In the event x\y = y/x, we
write x → y for the common value. We tend to favor \ in calculations,
but any statement about residuated structures has a “mirror image”
obtained by reading terms backwards (i.e., replacing xy by yx and
interchanging x/y with y\x).

We are interested in the situation where · is a monoid operation
with unit element e. In this case, we add the monoid unit to the
similarity type and refer to the resulting structure A = 〈A, ·, \, /, e,≤〉
as a residuated partially ordered monoid. If the partial order is a lattice
order, we obtain a purely algebraic structure A = 〈A,∧,∨, ·, \, /, e〉
called a residuated lattice-ordered monoid or a residuated lattice for
short.

Residuated lattices form a finitely based variety (see, for example,
[5] and [21]), denoted by RL.

Given a residuated lattice A = 〈A,∧,∨, ·, \, /, e〉, an element a ∈ A
is said to be integral if e/a = e = a\e, and A itself is said to be integral
if every member of A is integral. We denote by IRL the variety of
all integral residuated lattices. Important classes of residuated lattices
arise as negative cones of non-integral residuated lattices. The negative
cone of a residuated lattice L = 〈L,∧,∨, ·, \, /, e〉 is the algebra L− =
〈L−,∧,∨, ·, \L−, /L−, e〉, where L− = {x ∈ L | x ≤ e}, x\L−y = x\y ∧ e
and x/L−y = x/y∧e. It is easy to verify that L− is indeed a residuated
lattice.
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An element a ∈ A is said to be invertible if (e/a)a = e = a(a\e).
This is of course true if and only if a has a (two-sided) inverse a−1, in
which case e/a = a−1 = a\e. The structures in which every element is
invertible are therefore precisely the lattice-ordered groups and the par-
tially ordered groups. Perhaps a word of caution is appropriate here.
A lattice-ordered group is usually defined in the literature as an alge-
bra G = 〈G,∧,∨, ·, −1, e〉 such that 〈G,∧,∨〉 is a lattice, 〈G, ·, −1, e〉
is a group, and multiplication is order preserving (or, equivalently, it
distributes over the lattice operations). The variety of lattice-ordered
groups is term equivalent to the subvariety of RL defined by the equa-
tions (e/x)x ≈ e ≈ x(x\e); the term equivalence is given by x−1 = e/x
and x/y = xy−1, x\y = x−1y. We denote by LG the aforementioned
subvariety and refer to its members as lattice-ordered groups, but we
will freely use the traditional signature in our computations.

Cancellative residuated lattices are the focus of this paper and are
natural generalizations of lattice-ordered groups. Although cancellative
monoids are defined by quasi-equations, the class CanRL of cancella-
tive residuated lattices is a variety, as the following result demonstrates.

Lemma 2.1. ([2]) A residuated lattice is cancellative as a monoid if
and only if it satisfies the identities xy/y ≈ x ≈ y\yx. �

The variety of cancellative residuated lattices will be denoted by
CanRL and that of commutative cancellative residuated lattices by
CCanRL.

As was noted above, a monoid M is right reversible if any two princi-
pal semigroup ideals of M have a non-empty intersection: Ma∩Mb 6=
∅, for all a, b ∈ M . By a result due to Ore (refer to Section 1.10 of [7]),
right reversibility, combined with cancellativity, is a sufficient condition
for the embeddability of a monoid into a group. Moreover, it is also a
necessary condition if the embedding into a group is of the following
simple type. We say that a group G is a group of left-quotients of a
monoid M, if M is a submonoid of G and every element of G can be
expressed in the form a−1b for some a, b ∈M .

Lemma 2.2.

(1) A cancellative monoid has a group of left quotients if and only
if it is right reversible.

(2) A right reversible monoid uniquely determines its group of left
quotients. More specifically, let M be a right reversible monoid
and let G1(M) and G2(M) be groups of left quotients of M.
Then there exists a group isomorphism between G1(M) and
G2(M) that fixes the elements of M. �
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A proof of the previous result, due to Dubreil [9], can be found in
Section 1.10 of [7].

3. Conuclei and Interior Extractions

An interior operator on a poset P is a map σ : P → P with the
usual properties of preserving the order, being contracting (σ(x) ≤ x),
and being idempotent. Its image, Pσ, satisfies

(3.1) max{a ∈ Pσ : a ≤ x} exists for all x ∈ P .

Thus, σ is completely determined by its image by virtue of the formula

(3.2) σ(x) = max{a ∈ Pσ : a ≤ x}.

It follows that there exists a bijective correspondence between all inte-
rior operators σ on a poset P and all subposets O of P satisfying the
condition

(3.3) max{a ∈ O : a ≤ x} exists for all x ∈ P .

We note, for future reference, that if a subposet O of a poset P

satisfies (3.3), then it is closed under any existing joins in P. That is,
if (xi : i ∈ I) is an arbitrary family of elements of O such that P

∨

i∈I xi

exists, then O
∨

i∈I xi exists and P
∨

i∈I xi =O
∨

i∈I xi.

An interior operator σ on a residuated partially ordered monoid P

is said to be a conucleus if σ(e) = e and σ(x)σ(y) ≤ σ(xy), for all
x, y ∈ P . The latter condition is clearly equivalent to σ(σ(x)σ(y)) =
σ(x)σ(y), for all x, y ∈ P . In what follows, we will often refer to the
elements of Pσ as the open elements of P (relative to σ). An interior
extraction of a residuated partially ordered monoid P is a subposet
and a submonoid, Q, of P that satisfies condition (3.3) above. It is
clear that if σ is a conucleus on P, then Pσ is an interior extraction of
P. Conversely, if Q is an interior extraction of P, then σ

Q
: P → P –

defined by σ
Q

(x) = max{a ∈ Q : a ≤ x}, for all x ∈ P – is a conucleus
on P. Moreover, this correspondence is bijective.

The next result shows that every interior extraction of a residuated
lattice is a residuated lattice on its own right.

Lemma 3.1. If L = 〈L,∧,∨, ·, \, /, e〉 is a residuated lattice and σ
a conucleus on it, then the algebra Lσ = 〈Lσ,∧σ,∨, ·, \σ, /σ, e〉 is a
residuated lattice – where x∧σ y = σ(x∧y), x/σy = σ(x/y) and x\σy =
σ(x\y), for all x, y ∈ Lσ.

Proof. In view of the preceding discussion, Lσ is a submonoid and a
join-subsemilattice of L. It is obviously closed under \σ and /σ, and
∧σ is clearly the meet operation on Lσ. We complete the proof by
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showing that multiplication in Lσ is residuated with residuals \σ, and
/σ. Indeed, for all x, y, z ∈ Lσ, x ≤ z/σy is equivalent to x ≤ σ(z/y),
which in turn is equivalent to x ≤ z/y, since σ is contracting and
x = σ(x). �

A concept dual to the concept of an interior operator is that of a
closure operator. A closure operator on a poset P is a map γ : P → P

that is order preserving, extensive (x ≤ γ(x)), and idempotent. Its
image, Pγ, satisfies

(3.4) min{a ∈ Pγ : x ≤ a} exists for all x ∈ P .

Thus, γ is determined by its image via the formula

(3.5) γ(x) = min{a ∈ Pγ : x ≤ a}.

Hence there exists a bijective correspondence between all closure oper-
ators γ on a poset P and all subposets C of P satisfying the condition

(3.6) min{a ∈ C : x ≤ a} exists for all x ∈ P .

As in the dual situation, if a subposet C of a poset P satisfies (3.6),
then it is closed under any existing meets in P.

A closure operator γ on a residuated partially ordered monoid P

is said to be a nucleus if γ(x)γ(y) ≤ γ(xy), for all x, y ∈ P . In
what follows, we will have the occasion to refer to the elements of Pγ

as the closed elements of P (relative to γ). A closure retraction of
a residuated partially ordered monoid P is a subposet Q, of P that
satisfies condition (3.6) above, and, moreover, for all x ∈ P and y ∈ Q,
x\y ∈ Q and y/x ∈ Q. If γ is a nucleus on P, then Pγ is a closure
retraction of P. Conversely, if Q is a closure retraction of P, then
γ

Q
: P → P – defined by γ

Q
(x) = min{a ∈ Q : x ≤ a}, for all x ∈ P

– is a nucleus on P. Moreover, this correspondence is bijective. (Refer
to [12] for details.)

The next result shows that every closure retraction of a residuated
lattice is a residuated lattice on its own right. Its simple proof can be
found in [12]

Lemma 3.2. Let L = 〈L,∧,∨, ·, \, /, e〉 be a residuated lattice, γ be a
nucleus on L and Lγ be the closure retraction associated with γ. Then
the algebraic system Lγ = 〈Lγ ,∧,∨γ , ◦γ, \, /, γ(e)〉 – where x ◦γ y =
γ(x · y) and x ∨γ y = γ(x ∨ y) – is a residuated lattice. �

4. The Categorical Equivalence

The main result of this section establishes that the categories LGcn

and ORL are equivalent. Recall that ORL be the category of Ore
residuated lattices and residuated lattice homomorphisms. LGcn is the
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category with objects 〈G, σ〉, consisting of a lattice-ordered group G

augmented with a conucleus σ such that the underlying group of the
lattice-ordered group G is the group of left quotients of the underlying
monoid of σ(G). The morphisms of LGcn are lattice-ordered group
homomorphisms that commute with the designated conuclei.

We hasten to add that the class ORL is a proper subclass of the
variety of cancellative residuated lattices. For example, it is shown in
[2] that the free monoid in any number of generators can serve as the
underlying monoid of a residuated lattice. Such a residuated lattice
is not Ore, since the free monoid in two or more generators is clearly
not right reversible. However, ORL contains important subvarieties
of RL, including the variety of commutative, cancellative residuated
lattices. Refer to Section 5 for additional examples of subvarieties of
ORL.

Before we establish the promised categorical equivalence we will
prove a series of results.

Let L be an Ore residuated lattice and let G(L) be the group of left
quotients of the underlying monoid of L (see Lemma 2.2). Lemma 4.2
below shows that there exists a lattice order on G(L) that extends the
order of L and with respect to which G(L) becomes a lattice-ordered
group.

Lemma 4.1. Let a−1b, c−1d be two typical elements of G(L), with
a, b, c, d ∈ L. Then a−1b = c−1d in G(L) if and only if there exist
x, y ∈ L such that xb = yd and xa = yc.

Proof. By the definition of G(L), there exist elements x, y ∈ L such
that ca−1 = y−1x. Thus, a−1b = c−1d yields successively ca−1b = d,
y−1xb = d and xb = yd. Also ca−1 = y−1x implies xa = yc. Conversely,
if xa = yc and xb = yd, then a−1b = (xa)−1(xb) = (yc)−1yd = c−1d. �

Retaining the preceding notation, let ≤ denote the lattice order
of L and let � denote the binary relation on G(L) defined, for all
a, b, c, d ∈ L, by

(4.1) a−1b � c−1d iff there exist x, y ∈ L such that xb ≤ yd and
xa = yc.

Lemma 4.2. Let L be an Ore residuated lattice, let G(L) be the group
of left quotients of the underlying monoid of L, and let ≤ and � be
defined as above.
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(i) The binary relation � is the unique lattice order on G(L) that
extends ≤ and with respect to which G(L) is a lattice-ordered
group.

(ii) Finite joins in L coincide with the corresponding joins in G(L).
(iii) Let a−1b, c−1d be two representative elements of G(L), with

a, b, c, d ∈ L. The join of a−1b and c−1d in G(L) is given by the
formula,

(a−1b) ∨ (c−1d) = (xa)−1(xb ∨ yd),

where x, y are any two elements of L such that xa = yc.

Proof. To establish (i), we first determine the positive cone of �. Let
S be the subset of G(L) defined by

S = {a−1b : a, b ∈ L, b ≥ a}

We claim that S satisfies the following three conditions:

(a) S ∩ S−1 = {e};
(b) SS ⊆ S; and
(c) xSx−1 ⊆ S, for all x ∈ G(L).

In other words, S is a normal subsemigroup of G(L) that contains e,
but no other elements and its inverse.

It is clear that S satisfies condition (a). To prove condition (b),
suppose a−1b, c−1d ∈ S. Let x, y ∈ L such that x−1y = bc−1, that is,
yc = xb. Then, (a−1b)(c−1d) = a−1x−1yd = (xa)−1(yd). By assump-
tion, b ≥ a and d ≥ c. Thus, yd ≥ yc = xb ≥ xa. It follows that
(xa)−1(yd) = (a−1b)(c−1d) ∈ S. This completes the proof of (b).

We next establish (c). Let first a−1b ∈ S and c ∈ L. Then it is readily
seen that c−1a−1bc ∈ S. The proof of ca−1bc−1 ∈ S requires more work.
Let x, y, z, w ∈ L such that ca−1 = x−1y and ybc−1 = z−1w. These
equalities can be written alternatively as xc = ya and wc = zyb. Now,
ca−1bc−1 = x−1ybc−1 = x−1z−1w. Thus, to establish that ca−1bc−1 ∈ S,
it will suffice to prove that w ≥ zx. We have wc = zyb ≥ zya = zxc
– since b ≥ a, by assumption – and hence w ≥ zx, by cancellativity.
To summarize, we have shown that S is closed under conjugation by c
and c−1, for all c ∈ L. Consequently, S is a normal subsemigroup of
G(L), as was to be shown.

As is well known (see, for example, [11], page 13), any subset of
a group satisfying conditions (a), (b) and (c), is the positive cone of
a partial order on the group in question. In this particular case, the
partial order on G(L) with positive cone S is defined by x �1 y if and
only if x−1y ∈ S, for all x, y ∈ G(L). It is readily seen that �1 is none
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other than �. We also note that (4.1) ensures that any compatible
partial order on G(L) must coincide with �.

So far we have shown that G(L) is a partially ordered group with
respect to � . Further, it is clear that � extends ≤. To complete the
proof of (i), we must show that � is a lattice order. For that, we first
establish condition (ii) in the statement of the theorem. Denoting the
join operations in L and G(L) by ∨L and ∨G, respectively, we need to
show that a∨G b = a∨L b, for all a, b ∈ L. Obviously, a∨L b is an upper
bound of a and b in G(L). If c−1d is another upper bound of a and b,
with c, d ∈ L, then ca ≤ d and cb ≤ d. Thus, ca ∨L cb = c(a ∨L b) ≤ d.
This yields, a ∨L b ≤ c−1d and establishes condition (ii).

We next complete the proof of (i) by verifying that � is a lattice
order. It is well known and easy to prove – see for example [11], page
67 – that a partially ordered group G is a lattice-ordered group if and
only if, for every x ∈ G, the join x ∨ e exists. Specializing in G(L),
let a, b ∈ L. We need to prove that a−1b ∨G e exists. We have already
seen that b ∨G a exists. Now the map fa−1 : G(L) → G(L), defined
by fa−1(x) = a−1x, for all x ∈ G(L), is an order automorphism of
〈G(L),�〉 and hence it preserves all existing joins. Thus, fa−1(b∨Ga) =
fa−1(b) ∨G fa−1(a) = a−1b ∨G e exists.

It remains to prove (iii). Throughout the remainder of the paper
we will denote the join operation in G(L) by ∨. Let a−1b, c−1d be two
representative elements of G(L), with a, b, c, d ∈ L. Let x, y ∈ L be any
elements such that x−1y = ac−1, that is, xa = yc. Such elements exist,
since the underlying monoid of L is right reversible. Then, using the
fact that multiplication distributes over joins, we get (a−1b)∨ (c−1d) =
a−1(b ∨ ac−1d) = a−1(b ∨ x−1yd) = (xa)−1(xb ∨ yd).

�

As was noted above, the join operation of G(L) will be denoted by
∨. Further, we will use ≤ for � and the partial order of L.

Lemma 4.3. An Ore residuated lattice determines uniquely its lattice-
ordered group of left quotients. More specifically, let L be an Ore resid-
uated lattice and let G1(L) and G2(L) be lattice-ordered groups of left
quotients of L. Then there exists a lattice-ordered group isomorphism
between G1(L) and G2(L) that fixes the elements of L.

Proof. Let ≤1 and ≤2 denote the lattice-orders of G1(L) and G2(L),
respectively, and let ·1 and ·2 be the corresponding multiplications.
We will use the same symbol −1 for the inverse operation in both al-
gebras. In light of Lemma 2.2, there exists a group isomorphism
ϕ : G1(L) −→ G2(L) that fixes the elements of L. Let a−1 ·1 b, c

−1 ·1 d
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be two representative elements of G1(L), with a, b, c, d in L. Then, by
(4.1), a−1 ·1 b ≤1 c

−1 ·1 d if and only if there exist x, y ∈ L such that
xb ≤ yd and xa = yc in L. Thus, again by (4.1), this is equivalent to
a−1 ·2 b ≤2 c

−1 ·2 d, that is, ϕ(a−1 ·1 b) ≤2 ϕ(c−1 ·1 d). It follows that
ϕ is an order-isomorphism, and hence a lattice-ordered group isomor-
phism. �

Let L = 〈L,∧,∨, ·, \, /, e〉 be an Ore residuated lattice and let G(L)
be its lattice-ordered group of left quotients. Define σL : G(L) → G(L)
by

(4.2) σL(a−1b) = a\b, for all a, b ∈ L.

Lemma 4.4. Let L, G(L) and σL be defined as above.

(i) 〈G(L), σL〉 is an object in LGcn.
(ii) L = G(L)σL

, as residuated lattices.

Proof. Note first that σL is well defined. Indeed, let a−1b, c−1d be two
elements of G(L), with a, b, c, d ∈ L, such that a−1b = c−1d. In light of
Lemma 4.1, there exist elements x, y ∈ L such that xb = yd and xa =
yc. Hence, invoking the fact that L is a cancellative residuated lattice,
we get a\b = xa\xb = yc\yd = c\d, that is, σL(a−1b) = σL(c−1d).

Now, by definition, a\b is the greatest element z ∈ L such that
az ≤ b holds in L. But az ≤ b holds in L if and only if z ≤ a−1b holds
in G(L). Thus, a\b = max{z : z ∈ L, z ≤ a−1b}. It follows (refer to
Section 3) that L is an interior extraction of G(L) and the associated
interior operator σL is a conucleus.

�

Lemma 4.5. For every morphism χ : L → K of the category ORL,
let Ω(χ) : 〈G(L), σL〉 → 〈G(K), σK〉 be defined, for all a, b ∈ L, by
Ω(χ)(a−1b) = (χ(a))−1χ(b). Then Ω(χ) is the unique LGcn-morphism
from 〈G(L), σL〉 to 〈G(K), σK〉 extending χ.

Proof. Note first that Ω(χ) is well defined. Indeed, suppose that a, b, c, d
are elements in L such that a−1b = c−1d in G(L). Then, by Lemma
4.1, there exist elements x, y ∈ L such that xb = yd and xa =
yc. It follows that χ(x)χ(b) = χ(y)χ(d) and χ(x)χ(a) = χ(y)χ(c),
since χ : L → K is a homomorphism. Thus, again by Lemma 4.1,
χ(a)−1χ(b) = χ(c)−1χ(d), that is, Ω(χ)(a−1b) = Ω(χ)(c−1d).

Next, note that any LGcn-morphism from 〈G(L), σL〉 to 〈G(K), σK〉
that extends χ must be equal to Ω(χ). Thus, it will suffice to prove
that Ω(χ) is a LGcn-morphism. We first show that it is a lattice-ordered
group homomorphism. Ω(χ) clearly preserves the group operations.
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Also, note that the meet operation in G(L) satisfies u ∧ v = (u−1 ∨
v−1)−1, for all u, v ∈ G(L). Thus, it will suffice to show that Ω(χ)
preserves finite joins. Let a−1b, c−1d be two representative elements of
G(L), with a, b, c, d ∈ L. In light of Lemma 4.2, the join of a−1b and
c−1d in G(L) is given by the formula, (a−1b)∨(c−1d) = (xa)−1(xb∨yd),
where x, y are any two elements of L such that xa = yc. Now, since χ is
a homomorphism and Ω(χ) preserves the group operations, we get that
Ω(χ)((a−1b)∨(c−1d)) = (χ(x)χ(a))−1(χ(x)χ(b)∨χ(y)χ(d)). Thus, again
by Lemma 4.2, Ω(χ)((a−1b)∨ (c−1d)) = (χ(a)−1χ(b))∨ (χ(c)−1χ(d)) =
Ω(χ)(a−1b) ∨ Ω(χ)(c−1d).

Lastly, we need to prove that Ω(χ) commutes with the conuclei. Let
a, b ∈ L. Then Ω(χ)σL(a−1b) = Ω(χ)(a\b) = χ(a\b) = χ(a)\χ(b) =
σK(χ(a)−1χ(b)) = σKΩ(χ)(a−1b). Thus, Ω(χ)σL = σKΩ(χ). �

The promised equivalence between the categories ORL and LGcn

will be witnessed by the following pair of functors Ω : ORL → LGcn

and Ω−1 : LGcn → ORL.

Definition 4.6.

(a) For every object L in ORL, let Ω(L) = 〈G(L), σL〉.
(b) For every morphism χ : L → K of the category ORL, let

Ω(χ) : 〈G(L), σL〉 → 〈G(K), σK〉 be defined by Ω(χ)(a−1b) =
(χ(a))−1χ(b), for all a, b ∈ L. (Refer to Lemma 4.5.)

Definition 4.7. The functor Ω−1 : LGcn → ORL is defined as follows:

(a) For every object 〈G, σ〉 of LGcn, Ω−1(〈G, σ〉) = Gσ. (Recall
that Gσ denotes the residuated lattice with underlying set the
image of σ; refer to Lemma 3.1.)

(b) For every morphism ϕ : 〈G, σ〉 → 〈H, τ〉 in the category LGcn,
Ω−1(ϕ) : Gσ → Hτ is the restriction of ϕ on Gσ.

We need an additional auxiliary result.

Lemma 4.8. For every object 〈H, τ〉 in LGcn, ΩΩ−1(〈H, τ〉) is iso-
morphic to 〈H, τ〉.

Proof. Let 〈H, τ〉 be in LGcn and let L = Hτ (see Lemma 3.1). We
need to prove that 〈H, τ〉 is isomorphic to 〈G(L), σL〉. Now both H

and G(L) are lattice-ordered groups of quotients of L. Hence, in light
of Lemma 4.3, there exists a lattice-ordered group isomorphism ϕ :
H −→ G(L) that fixes the elements of L. Hence, it is left to establish
that ϕτ = σLϕ. Let ·1 and ·2 denote the multiplications in H and
G(L), respectively, and let −1 denote inversion in both algebras. Let
a−1 ·1 b be a representative element of H, with a, b ∈ L. We have,
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ϕτ(a−1 ·1 b) = ϕ(a\Lb) = a\Lb = σL(a−1 ·2 b) = σLϕ(a−1 ·1 b), where \L

denotes the left division operation in L. Thus, ϕτ = σLϕ, as was to be
shown.

�

The proof of the main result is an immediate consequence of the
preceding lemmas.

Theorem 4.9. The pair of functors Ω : ORL → LGcn and
Ω−1 : LGcn → ORL constitutes an equivalence of the categories ORL
and LGcn.

Proof. Lemma 4.5 ensures that Ω is a functor. By Theorem 1, page 93
of [22], it will suffice to prove the following:

(a) The functor Ω is faithful and full.
(b) For every object 〈H, τ〉 in LGcn, ΩΩ−1(〈H, τ〉) is isomorphic to

〈H, τ〉.

Recall that Ω is faithful (respectively, full) if for every pair of objects L,
K in ORL, the map χ 7→ Ω(χ) ofHom

ORL
(L,K) toHom

LGcn

(ΩL,ΩK)
is injective (respectively, surjective). Now Condition (b) was proved in
Lemma 4.8. With regard to (a), if χ1 and χ2 are two distinct mor-
phisms in Hom

ORL
(L,K), then Ω(χ1) and Ω(χ2) are distinct, since

they extend χ1 and χ2, respectively. This establishes faithfulness. To
prove that Ω is also full, let ϕ be any morphism in Hom

LGcn

(ΩL,ΩK).
Then its restriction Ω−1(ϕ) on L is in Hom

ORL
(L,K), and both ϕ and

Ω(Ω−1(ϕ)) are morphisms in Hom
LGcn

(ΩL,ΩK) that extend Ω−1(ϕ).
Then the uniqueness part of Lemma 4.5 implies that ϕ = Ω(Ω−1(ϕ)),
and hence Ω is surjective.

�

5. Other Categorical Equivalences

Given any subcategory V of ORL, which is defined by identities
relative to ORL, it is easy to specify a subcategory V∗ of LGcn that is
equivalent to V via the restriction of the functors Ω and Ω−1. Indeed,
we can define inductively for every term t in the language of residuated
lattices, a term t∗ in the language of lattice-ordered groups with an
additional unary operator, σ, as follows:

e∗ = e and x∗ = σ(x), for every variable x;
(r · s)∗ = r∗ · s∗;
(r\s)∗ = σ(r∗−1s∗);
(s/r)∗ = σ(s∗r∗−1);
(r ∨ s)∗ = r∗ ∨ s∗; and
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(r ∧ s)∗ = σ(r∗ ∧ s∗).

Then clearly the desired category V∗ is the full subcategory of LGcn

whose objects satisfy all the identities r∗ ≈ s∗ for every identity r ≈ s
that is valid in V.

In what follows, we will examine this correspondence for a few inter-
esting subclasses of CanRL.

Let V1 be the class of all cancellative residuated lattices L satisfying
the condition Lx = xL, for all x ∈ L. It is immediate that V1 ⊆ ORL
and V1 is a subvariety of RL. The defining equations for V1, relative
to RL, are xy/y ≈ x ≈ y\yx and (xy/x)x ≈ xy ≈ y(y\xy). Thus, in
light of Theorem 4.9 and the discussion at the beginning of this section,
we have:

Proposition 5.1. V1 and V∗

1
are equivalent, with the equivalence being

implemented by the restrictions of the functors Ω and Ω−1. �

Recall that CCanRL is the category of commutative, cancellative
residuated lattices and residuated lattice homomorphisms, while CLGcn

is the full subcategory of LGcn consisting of objects, 〈G, σ〉, whose first
components are abelian lattice-ordered groups

Corollary 5.2. The categories CCanRL and CLGcn are equivalent.
The equivalence is implemented by the restrictions of the functors Ω
and Ω−1. �

The proof of the next proposition is more involved.

Proposition 5.3. Let V2 be the subcategory of ORL whose objects
satisfy the law

(5.1) x(y ∧ z) ≈ xy ∧ xz.

Let V∗

2
be the subcategory of LGcn whose objects 〈G, σ〉 satisfy

(5.2) σ(x ∧ y) = σ(x) ∧ σ(y), for all x, y ∈ G.

Then V2 and V∗

2
are categorically equivalent. The equivalence is imple-

mented by the restrictions of the functors Ω and Ω−1.

Proof. It will suffice to prove that for all 〈G, σ〉 ∈ LGcn, 〈G, σ〉 satisfies
(5.2) if and only if Gσ satisfies (5.1).

Suppose first that 〈G, σ〉 ∈ V∗

2
satisfies (5.2). Then the meet of two

open elements is open, whence Gσ is a lattice-ordered submonoid of G.
But the law (5.1) holds in any lattice-ordered group. It follows that
(5.1) holds in Gσ since it holds in G.

Next suppose that Gσ satisfies (5.1). Let ∧G and ∧ denote the meet
operations in G and Gσ, respectively. To begin with, note that ∧ is
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the restriction of ∧G to Gσ. Indeed, let x, y ∈ Gσ. It is evident that
x ∧ y is a lower bound of x and y in G. Now every element of G is
of the form a−1b, for some a, b ∈ Gσ. Thus, if such an element is a
lower bound of x and y in G, then b ≤ ax and b ≤ ay in Gσ. By (5.1),
b ≤ a(x ∧ y) in Gσ, and so a−1b ≤ x ∧ y in G. This shows that x ∧ y
is the greatest lower bound of x and y in G.

Hence, if a−1b, c−1d are two representative elements of G, with
a, b, c, d ∈ Gσ, then the meet of a−1b and c−1d in G is given by the
formula,

(5.3) (a−1b) ∧G (c−1d) = (xa)−1(xb ∧ yd),

where x, y are any two elements of Gσ such that xa = yc. (Refer to
the proof of condition (iii) of Lemma 4.2 and recall that multiplication
distributes over meets in any lattice-ordered group.)

Now, in light of Lemma 3.1, the left division operation \ in Gσ is
given by a\b = σ(a−1b), for all a, b ∈ G. Therefore, condition (5.3),
together with cancellativity, yields σ(a−1b∧G c−1d) = (xa)\(xb∧yd) =
(xa\xb) ∧ (xa\yd) = (xa\xb) ∧ (yc\yd) = (a\b) ∧ (c\d) = σ(a−1b) ∧
σ(c−1d) = σ(a−1b) ∧G σ(c−1d). This establishes (5.2) and completes
the proof of the proposition.

�

Corollary 5.4. Any residuated lattice in ORL that satisfies the law
x(y ∧ z) ≈ xy ∧ xz can be represented as a residuated lattice of order
automorphisms of a chain; multiplication is the usual composition of
maps and the lattice operations are defined point-wise. In particular,
such a residuated lattice has a distributive lattice reduct.

Proof. This is a direct consequence of Proposition 5.3 and Holland’s
representation theorem, [19], which states that every lattice-ordered
group can be represented as a lattice-ordered group of ordered auto-
morphisms of a chain, with operations defined as in the statement of
the lemma. �

Corollary 5.5. Let V3 be the subvariety of CCanRL satisfying the law

(5.1) x(y ∧ z) ≈ xy ∧ xz.

Let V∗

2
be the subcategory of CLGcn whose objects 〈G, σ〉 satisfy

(5.2) σ(x ∧ y) = σ(x) ∧ σ(y), for all x, y ∈ G.

Then V3 and V∗

3
are categorically equivalent. The equivalence is imple-

mented by the restrictions of the functors Ω and Ω−1. �

Proposition 5.6. Let V4 be the subcategory of ORL whose objects
satisfy the law
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(5.4) x\(y ∨ z) ≈ (x\y) ∨ (x\z).

Let V∗

4
be the subcategory of LGcn whose objects 〈G, σ〉 satisfy

(5.5) σ(x ∨ y) = σ(x) ∨ σ(y), for all x, y ∈ G.

Then V4 and V∗

4
are categorically equivalent. The equivalence is imple-

mented by the restrictions of the functors Ω and Ω−1.

Proof. It will suffice to prove that for all 〈G, σ〉 ∈ LGcn, 〈G, σ〉 satisfies
(5.5) if and only if Gσ satisfies (5.4).

To begin with, recall that, in light of Lemma 3.1, the left division
operation \ in Gσ is given by a\b = σ(a−1b), for all a, b ∈ G. Suppose
now that 〈G, σ〉 satisfies (5.5). Then we have, for all elements a, b, c of
Gσ, a\(b∨c) = σ(a−1(b∨c)) = σ((a−1b)∨(a−1c)) = σ(a−1b)∨σ(a−1c) =
(a\b) ∨ (a\c). This establishes (5.4).

Conversely, suppose that Gσ satisfies (5.4), and let a−1b, c−1d be two
representative elements of G, with a, b, c, d ∈ Gσ. In view of Lemma
4.2, the join of a−1b and c−1d in G is given by the formula,

(a−1b) ∨ (c−1d) = (xa)−1(xb ∨ yd),

where x, y are any two elements of Gσ such that xa = yc. Therefore,
condition (5.4), together with cancellativity, yields σ(a−1b ∨ c−1d) =
(xa)\(xb ∨ yd) = (xa\xb) ∨ (xa\yd) = (xa\xb) ∨ (yc\yd) =
(a\b)∨ (c\d) = σ(a−1b)∨σ(c−1d). This establishes (5.5) and completes
the proof of the proposition. �

In what follows, we denote by CCanRepRL the variety of commuta-
tive, cancellative representable residuated lattices. This is simply the
subvariety of RL that is generated by all commutative, cancellative
totally ordered residuated lattices.

Corollary 5.7. The variety CCanRepRL is equivalent to the subcate-
gory V∗

5
of CLGcn whose objects 〈G, σ〉 satisfy

(5.5) σ(x ∨ y) = σ(x) ∨ σ(y), for all x, y ∈ G.

The equivalence is implemented by the restrictions of the functors Ω
and Ω−1.

Proof. This result is an immediate consequence of the preceding propo-
sition and of the fact, established in [2], that a commutative residuated
lattice satisfying the identity x → x ≈ e – which clearly holds in any
commutative and cancellative residuated lattice – is representable if
and only if it satisfies the identity

(5.6) x→ (y ∨ z) ≈ (x→ y) ∨ (x→ z).

�
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We note, in connection with Corollary 5.7, that the image of a conu-
cleus σ on an abelian lattice-ordered group G can be representable
without the nucleus being join preserving. Thus, it is essential for the
validity of this result that G be the group of quotients of Gσ. The
following example illustrates this point. Let R be the lattice ordered
abelian group of reals, and let G = R × R. Let σ be the nucleus on G

defined by σ(x, y) = (x∧y, x∧y), where x∧y = min{x, y} in R. Then
the image Gσ of σ is isomorphic to R, and hence it is representable,
but (5.5) does not hold. For instance, σ((0, 1) ∨ (1, 0)) = (1, 1), but
σ(0, 1) ∨ σ(1, 0) = (0, 0).

As was noted in the proof of Corollary 5.7, the law (5.6) implies
representability, which clearly implies the law (5.2). Hence, Corollaries
5.5 and 5.7 yield the following result.

Corollary 5.8. If 〈G, σ〉 ∈ CLGcn satisfies (5.5), then it also satisfies
(5.2). �

Another immediate consequence of Theorem 4.9 and the discussion
at the beginning of this section is the following result.

Proposition 5.9. The subcategory V6 of ORL consisting of integral
Ore residuated lattices is equivalent to the subcategory V∗

6
of LGcn whose

objects 〈G, σ〉 satisfy the law σ(x) ≤ e. �

A more interesting categorical equivalence, refer to Corollary 6.7
of [12], is presented in the next result of this section and concerns
the class of cancellative GMV-algebras. An extensive investigation of
GMV-algebras has been presented in [12]; refer also to Section 6 below
for further discussion regarding their relationship with classical MV-
algebras. Proofs of the properties presented below may be found in [2],
[5] or [21].

The variety, GBL, of GBL-algebras (generalized BL-algebras) is the
subvariety of RL defined by the laws

(5.7) y(y\x ∧ e) ≈ x ∧ y ≈ (x/y ∧ e)y.

The variety, GMV, of GMV-algebras (generalized MV-algebras) is the
subvariety of GBL defined by

(5.8) x/(y\x ∧ e) = x ∨ y = (x/y ∧ e)\x.

Note that both of these classes include the variety of lattice-ordered
groups.

Instead of verifying the identities (5.8), it is often more convenient
to verify the equivalent quasi-identities

(5.9) x ≤ y ⇒ y = x/(y\x) and x ≤ y ⇒ y = (x/y)\x.
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Likewise, the identities (5.7), are equivalent to the quasi-identities –
often referred to as divisibility conditions –

(5.10) x ≤ y ⇒ x = y(y\x) and x ≤ y ⇒ x = (x/y)y.

In light of (5.7) and (5.8), the variety, IGMV, of integral GMV-
algebras is defined by the identities

(5.11) x/(y\x) ≈ x ∨ y ≈ (x/y)\x,

while the variety, IGBL, of integral GBL-algebras is defined by the
identities

(5.12) y(y\x) ≈ x ∧ y ≈ (x/y)y.

Let L be a residuated lattice. For subalgebras A and B of L, the
inner direct product A ⊗ B is the lattice join A ∨ B – taken in the
lattice of subalgebras of L – if the map (x, y) 7→ xy is an isomorphism
from the direct product A×B onto A∨B, but is otherwise undefined
(see [21]).

A main tool in studying the structure of GBL-algebras and GMV-
algebras is the following decomposition result established in [12].

Lemma 5.10. ([12]) A residuated lattice L is a GMV-algebra (respec-
tively, GBL-algebra) if and only if it has an inner direct product de-
composition L = A ⊗ B, where A is an ℓ-group and B is an integral
GMV-algebra (respectively, integral GBL-algebra). �

Part (1) of the following lemma was established in [2], while part (2)
follows from part (1) and Lemma 5.10.

Lemma 5.11.

(1) The varieties of cancellative integral GBL-algebras and cancella-
tive integral GMV-algebras coincide, and they are precisely the
negative cones of lattice-ordered groups.

(2) The varieties of cancellative GBL-algebras and cancellative GMV-
algebras coincide. Moreover, a residuated lattice is a cancella-
tive GMV-algebra (equivalently, a cancellative GBL-algebra) if
and only if it has an inner direct product decomposition L =
A ⊗ B, where A is an ℓ-group and B is the negative cone of a
lattice-ordered group. �

Let us denote by CanGMV the variety of cancellative GMV-algebras.
It is clear that CanGMV ⊆ ORL, in fact, CanGMV ⊆ V1.

Proposition 5.12. The variety CanGMV is equivalent to the subcat-
egory CanGMV∗ of LGcn whose objects 〈G, σ〉 satisfy

(5.13) σ(σ(x) ∧ y) = σ(x) ∧ y, for all x, y ∈ G.
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The equivalence is implemented by the restrictions of the functors Ω
and Ω−1.

Proof. Suppose that 〈G, σ〉 satisfies (5.13). We claim that Gσ is a
GMV-algebra. In view of Lemma 5.11, it will suffice to prove that Gσ

satisfies the divisibility conditions (5.10). Note first that the set Gσ of
open elements of σ is downward closed, that is, if x ∈ Gσ and y ≤ x,
then y ∈ Gσ. It follows that the negative cone G− of G is a subset of
Gσ, since e ∈ Gσ. Next, let x, y ∈ Gσ such that x ≤ y. Then y−1x ≤ e
and so y−1x ∈ Gσ. It follows that yσ(y−1x) = y(y−1x) = x. Hence,
in particular, y(y\x) = x. In a similar fashion, (x/y)y = x. Thus, the
divisibility conditions (5.10) are satisfied.

Conversely, suppose that Gσ is a GMV-algebra. Then it has an
inner direct product decomposition Gσ = A ⊗ B−, where A and B−

are subalgebras of Gσ, A is an ℓ-group and B− is the negative cone of a
lattice-ordered group. Hence, the lattice ordered group G is isomorphic
to A ⊗ B. Further, the map σ sending an element ab ∈ A ⊗ B to
a(b ∧ e) ∈ A ⊗B− = Gσ clearly satisfies (5.13).

�

Corollary 5.13. The variety, LG−, of negative cones of lattice-ordered
groups is equivalent to the subcategory (LG−)∗ of LGcn whose objects
〈G, σ〉 satisfy

(5.8) σ(x) = x ∧ e, for all x ∈ G.

The equivalence is implemented by the restrictions of the functors Ω
and Ω−1. �

6. Subobjects and Epimorphic Images in RL×

In this section, we introduce a categorical framework for placing un-
der a common umbrella results connecting lattice-ordered groups with
algebras arising in algebraic logic. More specifically, we show that these
algebras are subobjects of lattice-ordered groups or epimorphic images
of negative cones of lattice-ordered groups in the category RL×. Re-
call that RL× is the category whose objects are residuated lattices and
whose morphisms are monoid homomorphisms that are also residuated
maps.

We start with a simple lemma, which is in the folklore of the subject;
refer, for example, to Chapter 0, Section 3 of [15].

Lemma 6.1. Let P and Q be partially ordered sets, let f : P → Q be
a residuated map and let f⋆ : Q → P be the residual of f . We have the
following:



20 FRANCO MONTAGNA AND CONSTANTINE TSINAKIS

(i) f⋆f is a closure operator on P.
(ii) ff⋆ is an interior operator on Q.

(iii) ff⋆f = f and f⋆ff⋆ = f⋆.
(iv) f is injective (respectively, surjective) if and only if f⋆ is sur-

jective (respectively, injective).
(v) Let Pf denote the image of f and let Qf⋆

denote the image of
f⋆. Then the partially ordered sets Pf and Qf⋆

– with respect
to the partial orders of Q and P, respectively – are isomorphic.
More specifically, the restriction of f⋆ on Pf is an isomorphism
from Pf to Qf⋆

. Its inverse is the restriction of f on Qf⋆
. �

Given a residuated lattice L – that is, an object in RL× – by a
subobject of L we understand a residuated lattice K such that K ⊆ L
and the inclusion map i : K → L is a morphism in RL×.

Our first step towards the promised results is Proposition 6.3, which
states that the objects of ORL are subobjects of lattice-ordered groups
in the category RL×. Restricting our attention to CCanRL, we obtain
the more complete result that the members of CCanRL are precisely
the subobjects of abelian lattice-ordered groups in the category RL×.
These results are immediate consequences of Theorem 4.9, Corollary
5.2 and Lemma 6.2 below. The latter shows that the concept of a
“subobject” in RL× is equivalent to the concept of interior extraction
introduced in Section 3. (Compare with Theorem 3.1.3 in [25].)

Lemma 6.2. Let L be a residuated lattice.

(1) Let K be a subobject of L and let i⋆ denote the residual of the in-
clusion map i : K → L. Then the composition σ = ii⋆ : L → L

is a conucleus and Lσ = K (as algebras).
(2) If σ is a conucleus on L, then the inclusion map i : Lσ → L is

a morphism in RL×, that is, Lσ is a subobject of L in RL×.

Proof. We first establish (1). In light of Lemma 6.1(iv), i⋆ is surjective
and hence, by Condition (i) of the same lemma, σ is an interior operator
on L with image K. Hence, to prove that σ is a conucleus it will suffice
to prove that σ(x)σ(y) ≤ σ(xy), for all x, y ∈ L. Let x, y ∈ L. We
have σ(x)σ(y) ≤ xy, since σ is an interior operator. By assumption,
multiplication in K coincides with that in L and hence the relation
σ(x)σ(y) ≤ xy yields σ(x)σ(y) = σ(σ(x)σ(y)) ≤ σ(xy). It follows
that K is the interior extraction corresponding to the conucleus σ, and
hence the structures K and Lσ are equal in light of Lemma 3.1.

The proof of (2) is immediate, since the inclusion map i : Lσ → L is
monoid homomorphism and a residuated map with residual the map
σ : L → Lσ.
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�

Proposition 6.3. Every Ore residuated lattice is a subobject of a lattice-
ordered group in the category RL×.

Proof. Theorem 4.9 and Lemma 6.2. �

The following result is an immediate consequence of Corollary 5.2
and Lemma 6.2.

Proposition 6.4. The variety, CCanRL, of commutative cancellative
residuated lattices is the class of all subobjects of abelian lattice-ordered
groups in the category RL×. �

The framework of the category RL× also sheds new light into the
main results in [24], [10] and [12], by enabling us to view integral GMV-
algebras as the epimorphic images, in RL×, of negative cones of lattice-
ordered groups. MV-algebras and bounded GMV-algebras are special
epimorphic images of negative cones of abelian lattice-ordered groups
and arbitrary lattice-ordered groups, respectively.

We will need some additional terminology and references to the
literature. A residuated bounded lattice is an algebraic system L =
〈L,∧,∨, ·, \, /, e, 0〉 such that 〈L,∧,∨, ·, \, /, e〉 is a residuated lattice
and L satisfies x ∨ 0 ≈ x. Note that ⊤ = 0\0 = 0/0 is the greatest
element of such an algebra.

Commutative, integral residuated bounded lattices have been stud-
ied extensively in both algebraic and logical form, and include impor-
tant classes of algebras, such as the variety of MV-algebras, which
provides the algebraic setting for  Lukasiewicz’s infinite-valued proposi-
tional logic. Several term equivalent formulations of MV-algebras have
been proposed (see, for example, [6]). Within the context of commuta-
tive, residuated bounded lattices, MV-algebras are axiomatized by the
identity (x → y) → y ≈ x ∨ y, which is a relativized version of the
law ¬¬x ≈ x of double negation. The appropriate non-commutative
generalization of such an algebra is a residuated bounded lattice that
satisfies the identities x/(y\x) ≈ x ∨ y ≈ (x/y)\x. These algebras are
term equivalent to the algebras considered, among other places, in [10],
[13] and [14] under the names GMV-algebras and pseudo-MV-algebras.
We use the term bounded GMV-algebras for these algebras. The reader
will recall that the subvariety of, necessarily integral, residuated lat-
tices that satisfy the preceding law is the variety, IGMV, of integral
GMV-algebras.

A fundamental result in the theory of MV-algebras, due to Mundici
[24], is the categorical equivalence between the category of MV-algebras
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and the category of unital abelian lattice-ordered groups, that is, abelian
lattice-ordered groups with a designated strong order unit. Dvurečenskij
generalized, in [10], the Mundici correspondence to bounded GMV-
algebras and arbitrary unital lattice-ordered groups. Dvurečenskij’s
result is subsumed by the following result in [12].

Lemma 6.5. ([12])

(1) Let LG−

ncl be the category each object, 〈B, γ〉, of which con-
sists of the negative cone, B, of a lattice-ordered group aug-
mented with a nucleus γ on it whose image generates B as a
monoid. Let the morphisms of these categories be algebra homo-
morphisms. Then the categories IGMV and LG−

ncl are equiva-
lent.

(2) If L is an integral GMV-algebra and γ is a nucleus on L, then
Lγ is an integral GMV-algebra. �

The connection of this result with surjective morphisms in RL× is
provided by the following result, which shows that all closure retracts
of a residuated lattice L are of the form Lγ for some nucleus γ on L,
where Lγ is the residuated lattice defined in Lemma 3.2. (Compare
with Theorem 3.1.1 of [25].)

Lemma 6.6. Let f : L → K be a surjective morphism in RL×. Then
there exists a nucleus γ on L such that K ∼= Lγ.

Proof. Let f⋆ be the residual of f and let γ = f⋆f be the associated
closure operator on L (Lemma 6.1). To prove that γ is a nucleus,
we need to show that γ(a)γ(b) ≤ γ(ab), that is, (f⋆f(a))(f⋆f(b)) ≤
(f⋆f)(ab), for all a, b ∈ L. Let a, b ∈ L. Since f preserves multiplication
and f = ff⋆f , by Lemma 6.1, we have the following equivalences.

(f⋆f(a))(f⋆f(b)) ≤ f⋆f(ab) ⇐⇒ f((f⋆f(a))(f⋆f(b))) ≤ f(ab)

⇐⇒ (ff⋆f(a))(ff⋆f(b)) ≤ f(ab)

⇐⇒ f(a)f(b) ≤ f(ab)

Therefore, γ is a nucleus.

Now, since f is surjective, by Lemma 6.1(v), f⋆ is an isomorphism
of the partially ordered sets K and Lγ . Thus, to prove that K ∼= Lγ,
it will suffice to show that f⋆ : K → Lγ is a monoid homomorphism.
Note first that f⋆ preserves the multiplicative identities. Further, we
have for any a, b ∈ L,
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f⋆(f(a)f(b)) = f⋆(f(ab))

= (f⋆f)(ab)

= f⋆f(a) ◦γ f⋆f(b)

= γ(a) ◦γ γ(b)

Therefore, K ∼= Lγ , as was to be shown. �

Combining the last two results we get:

Proposition 6.7. A residuated lattice is an integral GMV-algebra if
and only if it is the epimorphic image, in RL×, of the negative cone of
a lattice-ordered group. �

We note that bounded GMV-algebras, and in particular MV-algebras,
are images of special nuclei. More specifically, they are of the form Bγa

,
where B is the negative cone of a lattice-ordered group, a is a fixed el-
ement of B and γa is the nucleus on B defined by γa(x) = a∨x, for all
x ∈ L (see [12] for details).

7. Residuated Lattices as Subobjects of Involutive

Residuated Lattices

This section of the paper is concerned with the question of whether
the results of the previous sections can be extended to residuated lat-
tices that are not cancellative or weakly cancellative. (Refer to the last
section for a stronger result involving weakly cancellative residuated
lattices.) In this setting, an appropriate substitute for the concept of
a lattice-ordered group is that of an involutive residuated lattice. By
employing an embedding result in [26] (see also [25] and [3]), we show
that every residuated lattice with top element is a subobject, in RL×,
of an involutive residuated lattice. It’s an open question at this time
as to whether this correspondence extends to a categorical equivalence.

An involutive residuated lattice is an algebra L = 〈L,∧,∨, ·, ′, e〉
such that

(i) 〈L,∧,∨〉 is a lattice;
(ii) 〈L, ·, e〉 is a monoid;

(iii) the unary operation ′ is an involution of the lattice 〈L,∧,∨〉,
that is, a dual automorphism such that x′′ = x, for all x ∈ L;
and

(iv) xy ≤ z ⇐⇒ y ≤ (z′x)′ ⇐⇒ x ≤ (yz′)′, for all x, y, z ∈ L.
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The term “involutive residuated lattice” is suggestive of the fact that
multiplication is residuated in such an algebra. Indeed, it is immediate,
from condition (iv) above, that for all elements x, y ∈ L, x\y = (y′x)′

and y/x = (xy′)′.

It is routine to verify that the class, InRL, of involutive residu-
ated lattices is a finitely based variety. Involutive residuated lattices
have received considerable attention both from the logic and algebra
communities. From a logical perspective, they are the algebraic coun-
terparts of the propositional non-commutative linear logic without ex-
ponentials. From an algebraic perspective, they include a number of
important classes of algebras, such as Boolean algebras, MV-algebras
and lattice-ordered groups.

It is often convenient to use a term-equivalent description of invo-
lutive residuated lattices. Namely, think of them as algebras L =
〈L,∧,∨, ·, \, /, e, d〉 such that:

(i) L = 〈L,∧,∨, ·, \, /〉 is a residuated lattice; and
(ii) d is an involutive element. The second condition means that, for

all x ∈ L, d/x = x\d (d is cyclic) and d/(x\d) = (d/x)\d = x
(d is weakly involutive).

Note that if Ld = 〈L,∧,∨, ·, \, /, e, d〉 is an algebra as defined above
and we define x′ = d/x, for all x ∈ L, then L′ = 〈L,∧,∨, ·, ′, e〉
becomes an involutive residuated lattice. On the other hand, if L′ =
〈L,∧,∨, ·, ′, e〉 is an involutive residuated lattice, then the algebra Ld =
〈L,∧,∨, ·, \, /, e, d〉 – defined by (a) d = e′; and (b) x\z = (z′x)′, z/
x = (xz′)′, for all x, z ∈ L – satisfies conditions (i) and (ii) above.

Lemma 7.1. Let L be a residuated lattice with greatest element ⊤.

(i) L̃ = 〈L × L,∧,∨, ·, \, /, E,D〉 is – with the operations defined
below – a residuated lattice with an involutive element D:

(a, x) ∧ (b, y) = (a ∧ b, x ∨ y)

(a, x) ∨ (b, y) = (a ∨ b, x ∧ y)

(a, x)(b, y) = (ab, y/a ∧ b\x)

(a, x)\(b, y) = (a\b ∧ x/y, ya)

(a, x)/(b, y) = (a/b ∧ x\y, bx)

E = (e,⊤)

D = (⊤, e)
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(ii) That D = (⊤, e) is involutive follows from the equality
(a, x)\(⊤, e) = (x, a) = (⊤, e)/(a, x),
for all a, x ∈ L.

(iii) Let L⋆ = 〈L⋆,∨,∧, ·, \⋆, /⋆, E〉, where

L⋆ = L× {⊤}

B/⋆A = B/A ∧ (⊤, ⊤),

A\⋆B = A\B ∧ (⊤, ⊤).

Then the map ε : L → L⋆, defined by ε(a) = (a,⊤) for all a ∈ L,
is a residuated lattice isomorphism. �

The operations of L̃ are admittedly confusing at first sight. However,
they are quite intuitive if they are viewed in the context of actions of
residuated lattices on partially ordered sets. The reader is referred to
[26] for details. What is important to keep in mind here is that L can

be identified with L⋆ within L̃, which is a dualizing residuated lattice
and hence an involutive residuated lattice.

Proposition 7.2. Every residuated lattice with a top element is a sub-
object in RL× of an involutive residuated lattice.

Proof. Let L be a residuated lattice with a top element ⊤ and let L⋆

and L̃ be defined as in Lemma 7.1. In light of Condition (iii) of the

same lemma, it will suffice to verify that L⋆ is a subobject of L̃, which
means that the inclusion map i : L⋆ → L̃ is a morphism in RL×. Thus
we have to verify that:

(a) L⋆ is a submonoid of L̃; and
(b) i is residuated.

The proof of (a) is immediate, since, for all a, b ∈ L, (a,⊤)(b,⊤) =
(ab,⊤/a∧ b\⊤) = (ab,⊤). The last equality follows from the fact that
⊤/c = c\⊤ = ⊤ in L, for all c ∈ L. To verify (b), consider the map

σ : L̃ → L⋆ – defined by σ(a, x) = (a,⊤), for all a, x ∈ L. We claim
that σ is the residual of i and, hence, the conucleus associated with L⋆.
This is again straightforward. Note first that for all (a, x), (b, y) ∈ L̃,

(a, x) ≤ (b, y) in L̃ if and only if a ≤ b and x ≥ y in L. Thus, for

elements (a,⊤) ∈ L⋆ and (b, y) ∈ L̃,

i(a,⊤) ≤ (b, y) in L̃ ⇐⇒ (a,⊤) ≤ (b, y) in L̃

⇐⇒ a ≤ b in L

⇐⇒ (a,⊤) ≤ (b,⊤) in L⋆

⇐⇒ (a,⊤) ≤ σ(b, y) in L⋆

This completes the proof of (b) and of the proposition. �
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It should be noted that the subalgebra of L̃ generated by L⋆ may
be properly contained in L̃. Thus, verifying that this subalgebra is
uniquely determined by L⋆ would be an important first step in pro-
ducing a categorical equivalence similar to the ones described in earlier
sections.

8. Applications to Many-Valued Logic

Throughout this section, we will depart from our standard conven-
tion and denote the multiplicative identity of a residuated lattice by
1.

A ΠMTL-algebra is a residuated bounded lattice (see section 6) L =
〈L,∧,∨, ·, \, /, 1, 0〉 that is commutative, integral, representable and
satisfies the equation

(7.1) (x→ 0) ∨ ((x→ xy) → y) = 1.

A product algebra is a divisible ΠMTL-algebra.

Product algebras and ΠMTL-algebras have been investigated in the
context of many-valued logic; refer, for example, to [16], [17], [20] and
[23]. It has been shown in [17] that the variety, PA, of product algebras
is generated by the standard product algebra L = 〈[0, 1],∧,∨, ·,→, 1, 0〉,
where multiplication is the usual multiplication of reals and the division
operation (residual) is given by

a→ b =

{

b
a

if b < a,
1 if a ≤ b.

The variety, ΠMT L, of ΠMTL-algebras is generated by the class
of all semicancellative left-continuous t-norms, that is, those t-norms
that satisfy the cancellation law for non-zero elements.

Let L be a subdirectly irreducible ΠMTL-algebra and let K denote
the set of non-zero elements of L: K = L− {0}. Since L is totally
ordered, (7.1) easily implies that K is closed under all the operations
of L – other than 0, of course – and the resulting residuated lattice K

is cancellative. Hence, if L is a subdirectly irreducible product algebra,
then, in light of Lemma 5.11, K is then negative cone of an lattice-
ordered abelian group.

The aforementioned relationship between ΠMTL-algebras and in-
tegral members of CCanRepRL, as well as the relationship between
product algebras and lattice ordered abelian groups suggests the possi-
bility of establishing a categorial equivalence between ΠMTL-algebras
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and product algebras with a conucleus. The main result of this section,
Theorem 8.11, demonstrates that this is indeed the case.

Given a ΠMTL-algebra A, we can construct a product algebra A∗

in the following manner. First, we represent A as a subdirect prod-
uct of subdirectly irreducible (hence totally ordered) ΠMTL-algebras
(Ai : i ∈ I). Then, for each i ∈ I, the set, Ci, of non-zero elements of
Ai is the subuniverse of an integral member, Ci, of CCanRepRL. It
follows that each Ci can be associated with the totally ordered abelian
group, Gi, of its (left) quotients. Now each negative cone G−

i of Gi,
augmented with a zero element 0i, gives rise to a product algebra A∗

i ,
by letting 0ix = x0i = 0i, 0i →i x = 1i, and x →i 0i = 0i for x 6= 0i.
Let D be the product of all the algebras A∗

i . Evidently, D is a product
algebra, with implication →∗ defined, for all x, y ∈ A∗, by

(x→∗ y)i =







(xi
−1yi) ∧ 1i if xi, yi > 0i;

1i if xi = 0i; and
0i if xi 6= 0i and yi = 0i.

Note that x →∗ y = x →∗ (x ∧ y); therefore we will always assume
that y ≤ x whenever we write (x→∗ y).

With reference to the preceding construction, we will denote by A∗

the subalgebra of D generated by A.

The following result is immediate.

Lemma 8.1.

(a) A∗ is a product algebra, A ⊆ A∗, and A is closed with respect
to the lattice and monoid operations of A∗.

(b) A∗ is generated by A as a product algebra.
�

If A is a ΠMTL-algebra and A∗ is a product algebra satisfying con-
ditions (a) and (b) of Lemma 8.1, then we will say that A∗ is a product
algebra generated by A.

We will prove below that any such algebra is isomorphic to the con-
crete algebra A∗ constructed above. In the sequel, whenever A is a
ΠMTL-algebra and A∗ is the product algebra generated by A, the op-
eration symbols without superscript will refer to A while those with
the superscript ∗ will refer to A∗.

Let A∗ be a product algebra generated by a ΠMTL-algebra A, and
let us represent A∗ as a subdirect product of a family of totally ordered
product algebras (A∗

i : i ∈ I). Then for i ∈ I, A∗

i = A∗/P ∗

i for some
prime filter P ∗

i of A∗. Let Pi = P ∗

i ∩ A.
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Lemma 8.2. Maintaining the notation established in the preceding
paragraph, we have the following for all i ∈ I.

(i) Pi is a prime filter of A.
(ii) Ai = A/Pi is a totally ordered ΠMTL-algebra.

(iii) A is a subdirect product of the family (Ai : i ∈ I).
(iv) The lattice ordered monoid reduct of Ai is (isomorphic to) a

subreduct of A∗

i .
(v) A∗

i is generated by (the isomorphic image of) Ai as a product
algebra.

Proof. The proofs of (i), (ii) and (iii) are immediate. With regard
to (iv), note that the map a/Pi → a/P ∗

i is a lattice ordered monoid
embedding of Ai into A∗

i . Finally, (v) follows from (iv) and from the
fact that A∗ is generated by A as a product algebra. �

For the remainder of this section, we will use the notation ¬x for
x→ 0.

Lemma 8.3. Let A be a ΠMTL-algebra and A∗ be a product algebra
generated by A. Then:

(a) The domain of A∗ is the set of all elements of the form a→∗ b
with a, b ∈ A and b ≤ a.

(b) Consider the term t(x, y, z, u) =
(¬x ∧ (z → u)) ∨ (¬z ∧ (x→ y)) ∨ (¬¬x ∧ ¬¬z ∧ (xu ↔ yz)).
Then for all a, b, c, d ∈ A with b ≤ a and d ≤ c,
a→∗ b = c→∗ d iff t(a, b, c, d) = 1 in A.

Proof. Throughout the proof we will fix a subdirect decomposition of
A∗ in terms of a family (A∗

i : i ∈ I) of totally ordered product algebras.
In light of Lemma 8.2, this induces a subdirect representation of A by
means of a family (Ai : i ∈ I) of totally ordered ΠMTL-algebras such
that for every i ∈ I, A∗

i is a product algebra generated by Ai.

We first establish (a). Let B = {a→∗ b : a, b ∈ A, b ≤ a}. We need
to prove that B = A∗.

Claim 1

For all a →∗ b, c →∗ d ∈ B, (a →∗ b) ∨∗ (c →∗ d) = (ac →∗ (cb ∨ ad)).
Thus B is closed under ∨∗.

Proof of Claim 1. Let i ∈ I.

If ai = 0i or ci = 0i, we have ((a →∗ b) ∨∗ (c →∗ d))i

= (ac→∗ (cb ∨ ad))i = 1i.

If ai, ci 6= 0i and bi = 0i, then ((a→∗ b)∨∗(c→∗ d))i = (c→∗ d)i and
(ac →∗ (cb ∨ ad))i = (ac →∗ ad)i = (c →∗ d)i. Similarly, if ai, ci 6= 0i
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and di = 0i, then ((a →∗ b) ∨∗ (c →∗ d))i = (ac →∗ (cb ∨ ad))i =
(a→∗ b)i.

Finally, if ai, ci, bi, di 6= 0i, then recalling that A∗

i \{0i} is the negative
cone G−

i of a totally ordered abelian group Gi, we obtain successively
((a→∗ b) ∨∗ (c→∗ d))i = (aici)

−1(cibi ∨ aidi) = (ac→∗ (cb ∨ ad))i.

This concludes the proof of Claim 1.

Claim 2

B is closed under products and meets in A∗.

Proof of Claim 2. Define, for all a, b, c, d ∈ A with b ≤ a and d ≤ c:
t1,1(a, c) = ¬a ∨ ¬c ∨ ac, t1,2(a, b, c, d) = ¬¬a ∧ ¬¬c ∧ bd,
t1(a, b, c, d) = t1,1(a, c) →∗ t1,2(a, b, c, d).
t2,1(a, c) = ¬a ∨ ¬c ∨ ac, t2,2(a, b, c, d) = ¬¬a ∧ ¬¬c ∧ cb ∧ ad,
t2(a, b, c, d) = t2,1(a, c) →∗ t2,2(a, b, c, d),
t3,1(a, c) = ¬¬a ∨ c, t3,2(a, d) = ¬a ∧ d,
t3(a, c, d) = t3,1(a, c) →∗ t3,2(a, d),
t4,1(a, c) = ¬¬c ∨ a, t4,2(b, c) = ¬c ∧ b,
t4(a, b, c) = t4,1(a, c) →∗ t4,2(b, c).

One can check by a straightforward computation that, for all i ∈ I,

If ai 6= 0i and ci 6= 0i, then
t1(a, b, c, d)i = (ac→∗ bd)i = ((a→∗ b)∗ ·∗ (c→∗ d))i,
t2(a, b, c, d)i = (ac →∗ (cb ∧ ad))i = ((a →∗ b)∗ ∧∗ (c →∗ d))i, and
t3(a, c, d)i = t4(a, b, c)i = 0i;

if ai = 0i and ci 6= 0i, then t1(a, b, c, d)i = t2(a, b, c, d)i = t4(a, b, c)i =
0i, and t3(a, c, d)i = (c→∗ d)i;

if ai 6= 0i and ci = 0i, then t1(a, b, c, d)i = t2(a, b, c, d)i = t3(a, c, d)i =
0i, and t4(a, b, c)i = (a→∗ b)i; and

if ai = ci = 0, then t3(a, c, d)i = t4(a, b, c)i = 1i, and
((a→∗ b)∗ ·∗ (c→∗ d))i = ((a→∗ b)∗ ∧∗ (c→∗ d))i = 1i.

By Claim 1, B is closed under ∨∗. Thus the formulas below establish
closure with respect to ·∗ and ∧∗.

(a→∗ b)∗ ·∗ (c→∗ d) = t1(a, b, c, d) ∨∗ t3(a, c, d) ∨∗ t4(a, b, c)
(a→∗ b)∗ ∧∗ (c→∗ d) = t2(a, b, c, d) ∨∗ t3(a, c, d) ∨∗ t4(a, b, c)

Claim 3

B is closed under →∗.

Proof of Claim 3. Let (a→∗ b), (c→∗ d) ∈ A∗ and let i ∈ I.

We first check that if ai, bi 6= 0i, then
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((a→∗ b)∗ →∗ (c→∗ d))i = (bc→∗ ad)i.

If ci, di 6= 0i, then ((a →∗ b)∗ →∗ (c →∗ d))i = (a−1

i bi)
−1c−1

i di =
(bici)

−1aidi = (bc →∗ ad)i. If on the other hand ci = 0i, then
(c →∗ d)i = ((a →∗ b)∗ →∗ (c →∗ d))i = (bc →∗ ad)i = 1i. If
ci 6= 0i and di = 0i, then ((a→∗ b)∗ →∗ (c→∗ d))i = (bc→∗ ad)i = 0i.

Now note that if ai = 0i, then ((a→∗ b)∗ →∗ (c→∗ d))i = (c→∗ d)i,
and that if ai 6= 0i and bi = 0i, then ((a→∗ b)∗ →∗ (c→∗ d))i = 1i.

Next we define, for a, b, c, d ∈ A with b ≤ a and d ≤ c:

s1,1(a, b, c) = ¬a ∨ ¬b ∨ bc, s1,2(a, b, d) = ¬¬a ∧ ¬¬b ∧ ad,
s1(a, b, c, d) = s1,1(a, b, c) →

∗ s1,2(a, b, d),
s2,1(a, c) = ¬¬a ∨ c, s2,2(a, d) = ¬a ∧ d,
s2(a, c, d) = s2,1(a, c) →

∗ s2,2(a, d),
s3(a, b) = ¬b ∧ ¬¬a.

Note that for all i ∈ I:

If ai, bi 6= 0i, s1(a, b, c, d)i = (bc→∗ ad)i = ((a→∗ b)∗ →∗ (c→∗ d))i,
and s2(a, c, d)i = s3(a, b)i = 0i.

If ai = 0, then s2(a, c, d)i = ((a→∗ b)∗ →∗ (c→∗ d))i = (c→∗ d)i, and
s1(a, b, c, d)i = s3(a, b)i = 0i.

If ai 6= 0i and bi = 0i, then s3(a, b)i = ((a→∗ b)∗ →∗ (c→∗ d))i = 1i.

It follows that

(a→∗ b)∗ →∗ (c→∗ d) = s1(a, b, c, d) ∨∗ s2(a, c, d) ∨∗ s3(a, b).

Since B is closed under ∨∗, (a →∗ b)∗ →∗ (c →∗ d) ∈ B, completing
the proof of Claim 3 and Case (a) in the statement of the lemma.

It remains to prove (b). Let i ∈ I. Suppose first that either ai = 0i or
ci = 0i. Then (a→∗ b)i = (c→∗ d)i iff they are both equal to 1i, that is,
iff ai = bi and ci = di. Moreover since (¬¬a ∧ ¬¬c ∧ (ad ↔ bc))i = 0i,
we have that t(a, b, c, d)i = 1i iff either ai = 0i (hence bi = 0i) and
ci = di, or ci = 0i (hence di = 0i) and ai = bi. Thus t(a, b, c, d)i = 1i iff
ai = bi and ci = di iff (a→∗ b)i = (c→∗ d)i.

If ai, ci 6= 0i, then distinguish the following cases.

If bi = di = 0i, then t(a, b, c, d)i = 1i and (a→∗ b)i = (c→∗ d)i = 0i.

If bi = 0i and di 6= 0i, then t(a, b, c, d)i = 0i 6= 1i, (a→∗ b)i = 0i and
(c→∗ d)i 6= 0i, hence (a→∗ b)i 6= (c→∗ d)i.

For di = 0i and bi 6= 0i, the argument is similar.



ORDERED GROUPS WITH A CONUCLEUS 31

If bi 6= 0i and di 6= 0i, then (a →∗ b)i = (c →∗ d)i iff aidi = bici.
On the other hand, (((¬a ∧ (c → d)) ∨ (¬c ∧ (a → b)))i = 0i and
(¬¬a ∧ ¬¬c)i = 1i, therefore t(a, b, c, d)i = 1i iff aidi = bici.

The proof of Lemma 8.3 is now complete. �

Lemma 8.4. Let A be a ΠMTL-algebra. If both A∗ and B∗ are product
algebras generated by A, then they are isomorphic. Hence they are both
isomorphic to the concrete product algebra constructed at the beginning
of the section.

Proof. We will use the superscripts ∗

A and ∗

B for the operations of A∗

and B∗, respectively. Every element of A∗ can be written as a →∗

A b,
for some a, b ∈ A, and, likewise, every element of B∗ can be written as
c →∗

B d for some c, d ∈ A. Set Φ(a →∗

A b) = a →∗

B b. We claim that
Φ is well defined and an isomorphism from A∗ to B∗. First of all, if
a →∗

A b = c →∗

A d, then by Lemma 8.3 (b), t(a, b, c, d) = 1 holds in A,
therefore by Lemma 8.3 (b) again, Φ(a →∗

A b) = a →∗

B b = c →∗

B d =
Φ(c →∗

A d). Thus, Φ is well-defined. A similar argument shows that
Φ is one-one. That Φ is onto is clear. Now we prove that Φ preserves
the operations. We start by noting that Φ preserves joins. Indeed,
Φ((a →∗

A b) ∨∗

A (c →∗

A d)) = Φ(ac →∗

A (bc ∨ ad)) = ac →∗

B (bc ∨ ad) =
(a→∗

B b) ∨∗

B (c→∗

B d) = Φ(a→∗

A b) ∨
∗

B Φ(c→∗

A d).

Moreover, with reference to the notation of the proof of Lemma 8.3,
(a →∗

A b) ·∗A (c →∗

A d) is the join (in A∗) of t1,1(a, c) →∗

A t1,2(a, b, c, d),
t3,1(a, c) →∗

A t3,2(a, d) and t4,1(a, c) →∗

A t4,2(b, c). Since Φ is join-
preserving, Φ((a →∗

A b) ·∗A (c →∗

A d)) is the join in B∗ of the fol-
lowing elements: t1,1(a, c) →∗

B t1,2(a, b, c, d), t3,1(a, c) →∗

A t3,2(a, d) and
t4,1(a, c) →∗

B t4,2(b, c). Again by the proof of Lemma 8.3, this join is
(Φ(a) →∗

B Φ(b)) ·∗B (Φ(c) →∗

B Φ(d)). We have shown that Φ preserves
multiplication. The proof that Φ preserves meet and the residual is
quite similar. �

If A is a ΠMTL-algebra and A∗ is the product algebra generated by
A, we define the assignment σA : A∗ → A∗ by σA(x →∗ y) = x → y,
for all x →∗ y ∈ A∗. We reiterate that, following the convention
adopted earlier, →∗ denotes the residual in A∗ and → denotes the
residual in A.

Lemma 8.5. Maintaining the notation of the preceding paragraph, we
have the following:

(i) σA is a well-defined map with image A.
(ii) σA is a conucleus on A∗.

(iii) σA is a lattice endomorphism of A∗.
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Proof. (i). We will work with a subdirect decomposition of A∗ in terms
of totally ordered product algebras (A∗

i : i ∈ I). In order to show that
σA is well defined, it suffices to prove that, for all i ∈ I, if (a→∗ b)i =
(c→∗ d)i, then (a → b)i = (c→ d)i. Fix an i. If ai, bi, ci, di 6= 0i, then
(a→∗ b)i = a−1

i bi and (c→∗ d)i = c−1

i di. Hence, (a→∗ b)i = (c→∗ d)i

implies bici = aidi, and also (a → b)i = (ac → bc)i = (ac → ad)i =
(c → d)i. If some of ai, bi, ci, di is equal to 0i, then either (a →∗ b)i =
(c →∗ d)i = 0i or (a →∗ b)i = (c →∗ d)i = 1i. Then the claim
follows from the fact that for all x, y ∈ A one has: (x →∗ y)i = 1i iff
(x → y)i = 1i iff xi ≤ yi, and (x →∗ y)i = 0i iff (x → y)i = 0i iff
xi 6= 0i and yi = 0i. That the image of σA is A is clear.

(ii) The definition of σA implies that for x = a →∗ b ∈ A∗, σA(x) is
the greatest element of A which is less than or equal to x, therefore σA

is an interior operator. Moreover, the interior extraction corresponding
to σA is A (refer to Section 3). Thus, since σA is also a submonoid of
A∗, σA is a conucleus, and (ii) is proved.

(iii) We have for all a, b, c, d ∈ A with b ≤ a and d ≤ c,
σA((a→∗ b) ∨∗ (c→∗ d)) = ac→ (cb∨ ad) = (ac→ cb) ∨ (ac→ ad) =
(a→ b) ∨ (c→ d) = σA(a→∗ b) ∨∗ σA(c→∗ d).
Thus σA is join-preserving. Moreover it follows from the proof of
Lemma 8.3 that σA((a →∗ b) ∧∗ (c →∗ d)) is the join of t′

2
(a, b, c, d) =

t2,1(a, c) → t2,2(a, b, c, d); t′
3
(a, c, d) = t3,1(a, c) → t3,2(a, d); and

t′
4
(a, b, c) = t4,1(a, c) → t4,2(b, c). Also, by the definition of σA, σA(a→∗

b)∧∗ σ(c→∗ d) = (a→ b)∧ (c → d). We verify that these elements are
equal. Let i ∈ I. If ai, ci 6= 0i, then t′

3
(a, c, d)i = t′

4
(a, b, c)i = 0i and

t′
2
(a, b, c, d)i = (ac→ (cb∧ad))i = ((a→ b)∧ (c→ d))i. If ai = ci = 0i,

then ((a→ b)∧(c → d))i = t′
3
(a, c, d)i = 1i. If ai = 0i and ci 6= 0i, then

((a → b) ∧ (c → d))i = (c → d)i, t
′

2
(a, b, c, d)i = t′

4
(a, b, c)i = 0i and

t′
3
(a, c, d) = (c→ d)i. The case where ci = 0i and ai 6= 0i is similar. �

Definition 8.6. Let PAcn be the category with objects 〈A, σ〉 consisting
of a product algebra A augmented with a conucleus σ that is a lattice
homomorphism and whose image generates A. The morphisms of PAcn

are algebra homomorphisms (i.e., residuated lattice homomorphisms
that preserve zero) that commute with the designated nuclei.

We note that if 〈A, σ〉 is an object of PAcn, then the image, Aσ,
of σ is closed under multiplication and the lattice operations of A.
Moreover, in light of Lemma 3.1, it becomes a residuated lattice if the
implication is defined by x →σ y = σ(x → y), for all x, y ∈ Aσ. It is
actually a residuated bounded lattice, since 0 ∈ Aσ. We shall denote
this residuated bounded lattice by Aσ.
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Lemma 8.7. If 〈A, σ〉 is an object in PAcn, then Aσ is a ΠMTL-
algebra.

Proof. As was noted above, Aσ is a residuated bounded lattice whose
operations coincide with those of A, except the implication which is
given by x →σ y = σ(x → y), for all x, y ∈ Aσ. In what follows, we
will write ¬σx for x →σ 0.

It is clear that Aσ is a commutative, integral residuated bounded
lattice. Moreover we have

(x→σ y)∨ (y →σ x) = σ(x→ y)∨σ(y → x) = σ(x→ y ∨ y → x) = 1,

and this equation in any commutative and integral residuated lattice
implies representability.

Thus, in order to prove that Aσ is a ΠMTL-algebra, it remains to
verify that ¬σx ∨ ((x →σ xy) →σ y) = 1, for all x, y ∈ Aσ. To begin
with, note that for all z, u ∈ A, σ(z)σ(z → u) ≤ σ(z(z → u)) ≤
σ(u), and hence σ(z → u) ≤ σ(z) → σ(u). Thus if x, y ∈ Aσ, then
σ(x → xy) → y ≥ σ((x → xy) → y). This yields (x →σ xy) →σ y =
σ(σ(x → xy) → y) ≥ σ((x → xy) → y). Since ¬σx = σ(¬x), we get
successively ¬σx ∨ ((x →σ xy) →σ y) ≥ σ(¬x) ∨ σ((x → xy) → y) =
σ(¬x ∨ ((x→ xy) → y)) = σ(1) = 1. This concludes the proof. �

Lemma 8.8. Let 〈B, σ〉 be an object of PAcn, let B∗

σ be the product
algebra generated by Bσ, and let σBσ

be the associated conucleus. Then
〈B, σ〉 and 〈B∗

σ, σBσ
〉 are isomorphic objects of PAcn.

Proof. Both B and B∗

σ are product algebras generated by Bσ, therefore
they are isomorphic as product algebras, by Lemma 8.4. Moreover the
isomorphism Φ defined in the proof of Lemma 8.4 leaves the elements
of Bσ fixed. Thus for every x ∈ B, Φ(σ(x)) = σ(x). Now σ(x) is the
greatest element z ∈ Bσ such that z ≤ x in B, and σBσ

(Φ(x)) is the
greatest element z ∈ Bσ such that z ≤ Φ(x) in B∗

σ. Since Φ is an
isomorphism of product algebras, we have, for all z ∈ Bσ, z ≤ x iff
Φ(z) = z ≤ Φ(x). Thus σBσ

(Φ(x)) = σ(x) = Φ(σ(x)), and the claim is
proved. �

Recall that ΠMT L is the category of ΠMTL-algebras and algebra
homomorphisms.

Lemma 8.9. For every morphism χ: A → B in the category ΠMT L,
let Π(χ): 〈A∗, σA〉 → 〈B∗, σB〉 be defined, for all elements a, b ∈ A, by
Π(χ)(a→∗

A b) = χ(a) →∗

B χ(b). Then Π(χ) is the unique PAcn-morphism
from 〈A∗, σA〉 into 〈B∗, σB〉 extending χ.
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Proof. To begin with, note that Π(χ) is well defined. Indeed, if a→∗

A b
= c →∗

A d, then t(a, b, c, d) = 1 holds in A (Lemma 8.3(b)). Hence
t(χ(a), χ(b), χ(c), χ(d)) = 1 holds in B, and thus, invoking Lemma
8.3(b) once again, we get that χ(a) →∗

B χ(b) = χ(c) →∗

B χ(d).

We now verify that Π(χ) preserves the join operation. By the proof
of Lemma 8.3(a), we have

Π(χ)((a→∗

A b) ∨
∗

A (c→∗

A d)) = Π(χ)(ac→∗

A (bc ∨ ad))
= χ(ac) →∗

B χ(bc ∨ ad)
= χ(a)χ(c) →∗

B (χ(b)χ(c) ∨ χ(a)χ(d))
= (χ(a) →∗

B χ(b)) ∨∗

B (χ(c) →∗

B χ(d))
= Π(χ)((a→∗

A b) ∨
∗

B Π(χ)(c→∗

A d)).

We next prove that Π(χ) preserves multiplication. By the proof of
Lemma 8.3 we have:

(a→∗

A b) ·∗A (c→∗

A d) = t1(a, b, c, d) ∨∗

A t3(a, c, d) ∨∗

A t4(a, b, c),

thus, since Π(χ) is compatible with join, Π(χ)((a →∗

A b) ·∗A (c →∗

A d))
reduces to Π(χ)(t1(a, b, c, d)) ∨∗

B Π(χ)(t3(a, c, d)) ∨∗

B Π(χ)(t4(a, b, c)).

On the other hand, t1(a, b, c, d) = t1,1(a, c) →∗

A t1,2(a, b, c, d) where
t1,1 and t1,2 are ΠMTL-algebra terms. Thus

Π(χ)t1(a, b, c, d) = t1,1(χ(a), χ(c)) →∗

B t1,2(χ(a), χ(b), χ(c), χ(d)).

Similarly, we obtain

Π(χ)t3(a, c, d) = t3,1(χ(a), χ(c)) →∗

B t3,2(χ(c), χ(d)),

Π(χ)t4(a, b, c) = t4,1(χ(a), χ(c)) →∗

B t4,2(χ(b), χ(c)).

And,

Π(χ)(a→∗

A b) ·∗B Π(χ)(c→∗

A d)) = (χ(a) →∗

B χ(b)) ·∗B (χ(c) →∗

B χ(d)).

Therefore, by the proof of Lemma 8.3, Π(χ)(a→∗

A b)·
∗

B Π(χ)(c→∗

A d) is
the join of the following: t1,1(χ(a), χ(c)) →∗

B t12(χ(a), χ(b), χ(c), χ(d)),
t31(χ(a), χ(c)) →∗

B t3,2(χ(c), χ(d)) and t4,1(χ(a), χ(c)) →∗

B t4,2(χ(b), χ(c)).
It follows:

Π(χ)((a→∗

A b) ·
∗

A (c→∗

A d)) = Π(χ)(a→∗

A b) ·
∗

B Π(χ)(c→∗

A d).

One can verify in a quite analogous manner that Π(χ) preserves meet
and implication.

We now prove that Π(χ) commutes with the conuclei. We have
Π(χ)(σA(a→∗

A b)) = Π(χ)(a→ b) = χ(a→ b) = χ(a) → χ(b). On the
other hand, σB(Π(χ)(a →∗

A b)) = σB(χ(a) →∗

B χ(b)) = χ(a) → χ(b),
and the claim is proved.
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Lastly, it is clear that any homomorphism from 〈A∗, σA〉 to 〈B∗, σB〉
extending χ must coincide with Π(χ). �

We now define explicitly a pair of functors that will establish the
equivalence of the categories ΠMT L and PAcn.

Definition 8.10.

(i) For every object A in ΠMT L, let Π(A) = 〈A∗, σA〉.
(ii) For any ΠMT L-morphism χ : A → B, let Π(χ) be the mor-

phism Π(χ) : 〈A∗, σA〉 → 〈B∗, σB〉 defined by Π(χ)(a→∗

A∗ b) =
χ(a) →∗

B∗ χ(b).
(iii) For every object 〈M, σ〉 in PAcn, let Π−1〈M, σ〉 = Mσ.
(iv) For every PAcn-morphism ϕ : 〈M, σM〉 → 〈N, σN〉, let

Π−1(ϕ) : MσM
→ NσN

denote the restriction of ϕ on MσM
.

Theorem 8.11. The pair of functors Π and Π−1 constitute an equiv-
alence of the categories ΠMT L and PAcn.

Proof. As in the proof of Theorem 4.7, it is sufficient to prove that Π
is full and faithful, and that for every object 〈A, σ〉 of PAcn, A and
Π(Π−1(A)) are isomorphic. For any two objects A, B of ΠMT L and
for any two morphisms φ, ψ ∈ Hom(A,B), if φ 6= ψ, then Π(φ) 6=
Π(ψ), as Π(φ) extends φ and Π(ψ) extends ψ. Thus Π is faithful.

Now let γ ∈ Hom(Π(A),Π(B)). Then its restriction Π−1(γ) to A is
a morphism from A into B, and by Lemma 8.9, has a unique extension
to a morphism from Π(A) to Π(B). Now both Π(Π−1(γ)) and γ are
such morphisms, and hence they must coincide. We have verified that
Π is full.

Lastly, Lemma 8.8 implies that if 〈B, σ〉 is an object in PAcn, 〈B, σ〉
and Π(Π−1〈B, σ〉) are isomorphic. The proof of the theorem is now
complete. �
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