GODEL INCOMPLETENESS IN AF C*ALGEBRAS

DANIELE MUNDICI AND CONSTANTINE TSINAKIS

ABSTRACT. For any (possibly, non-unital) AF C*-algebra A with comparabil-
ity of projections, let D(A) be the Elliott partial monoid of A, and G(A4) the
dimension group of A with scale D(A). For D C D(A) a generating set of
G(A) let P be the set of all formal inequalities a1 + -+ + ap < by + -+ b
satisfied by G(A), for any a;,b; € D. By Elliott’s classification, P together
with the list of all sums a1 + - -+ + a € D(A) uniquely determines A. Can P
be Godel incomplete, i.e., effectively enumerable but undecidable? We give a
negative answer in case D is finite, and a positive answer in the general case.
We also show that the range of the map A — D(A) precisely consists of all
countable partial abelian monoids satisfying the following three conditions: (i)
a+b=at+c=>b=c, (li)a+b=0=a=>b=0and (iii) Va,b € E Ic € E
such that eithera +c=borb+4+c=a.

1. INTRODUCTION

We assume familiarity with Elliott’s classification [7, 6]. An AF C*-algebra A
is the inductive limit of a sequence of finite-dimensional C*-algebras. A is not
assumed to have a unit. For every AF C*-algebra A let D(A) be the countable set
of (Murray-von Neumann) equivalence classes of projections in A. The operation of
adding two orthogonal projections equips D(A) with a partial addition + making
D(A) into a partial abelian monoid. Elliott [7, 4.3 and Section 7] proved that for
any two AF C*-algebras A and B, D(A) is isomorphic to D(B) if and only if A is
isomorphic to B. Every D(A) arises as a scale, i.e., a directed hereditary (=order-
convex) generating subset of the positive cone of G(A), of a unique countable scaled
dimension group G(A).

While Bratteli diagrams provide useful infinite combinatorial presentations of
all AF C*-algebras, as an effect of Elliott’s classification, many interesting AF C*-
algebras can also be presented as finite strings of symbols: this is a prerequisite for
the study of (effective) enumerability and decidability problems for classes of AF
C*-algebras, once they are presented by integer matrices [7, 8, 3, 4], propositions
in infinite-valued Lukasiewicz logic [13], or abstract simplicial complexes [14]. See
[12] for background on enumerability and decidability.

Following a time-honored tradition, in this paper we shall present every AF
C*-algebra A by choosing a suitable set D C D(A) of generators of G(A) and
then listing the relations (i.e., the inequalities between formal sums of generators)
satisfied by G(A). In order to uniquely recover A, all sums a; + -+ - + ay, existing
in D(A) must also be listed. There is no need to consider the order of G(A), since
z>yin G(A) iff e = y+ z for some z = by + -+ by, (b € D(A)).
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An AT C*-algebra A is said to have comparability (of projections in the sense of
Murray-von Neumann) if for any two projections in A, one of them is the support of
a partial isometry whose range is contained in the other. This condition is equivalent
to the order of D(A) (equivalently, the order of G(A)) being total. Notable examples
of AF C*-algebras with comparability include (i) the Effros-Shen C*-algebras Fo,
for all 8 € R\ Q [6, p.65], (ii) the C*-algebra & of compact operators, (iii) all
Behnke-Leptin separable postliminary C*-algebras with finitely many closed two-
sided ideals Ji,...,Ji, having the additional property that J; O J;41 for each
i=1,...,k—1 (see [2] and [8, 5.2]), and (iv) Glimm UHF algebras [6, p.28]. The
scaled dimension group of any AF C*-algebra A of type (i)-(iii) has a finite set
D C D(A) of generators. Identifying D with a set of symbols, we denote by D* the
set of words (=tuples) of D. For any a = (a1, ...,ai) € D* we let > a be short for
ay + -+ ag

Our main result is the following generalization of [13, 6.1]:

Theorem 1.1. Let A be an AF C*-algebra with comparability, and suppose D C
D(A) is a finite generating set of G(A). Suppose the set

P ={(a,b) € D" x D" | G(A) satisfies Y _a < b}
1s enumerable. Then P is decidable.
The finiteness assumption for D cannot be dropped (Theorem 2.3).

While the constructions [7], [6, p.46] of G(A) from D(A) refer to A, in Section
3, following Baer [1] we shall give an intrinsic A-free definition of G(A4) from D(A).
As a preliminary step, the class of Elliott’s partial monoids of AF C*-algebras with
comparability will be characterized as follows: !

Theorem 1.2. Let F = (F,0,4) be a countable partial abelian monoid. Then the
following conditions are equivalent:

(i) E is the FElliott partial monoid of some AF C*-algebra with comparability.

(ii) E satisfies the conditions

Cancellativity: a+b=a+c=>b=g¢

Positivity: a+b=0=a=5b=0;

Comparability: Ya,b € E Jec € E such that eithera+c=0b orb+c=a.

For any countable partial monoid E satisfying these three conditions, in Propo-
sition 3.3 the AF C*-algebra A with D(A) = FE is easily obtained, generalizing
Elliott’s ultrasimplicial construction [8, p.44].

Sections 2 and 3 can be read independently.

2. PROOF oF THEOREM 1.1

We need some elementary facts about complexes of convex polyhedral cones in
R™ and abelian lattice-ordered groups (for short, ¢-groups). We briefly summarize
the notions and notations used in this section.

Rational simplicial cones and nonsingular fans [9, 10]. A fan is a finite complex A
of rational simplicial cones in R™. For each i = 1,...,n we let A() denote the set
of i-dimensional cones in A. In particular, we write

AW = Lo k) = {Bsgvy, . RBsovie ) = {(va), . (i),

lcompare with with Pulmannov4’s result in [16],[5, 3.3.11] for unital AF C*-algebras.
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for the set of one-dimensional cones (=rays) of A, and we say that the ray p; of A
is generated by the primitive 2 vector v; € Z™. The latter is uniquely determined.
We shall similarly express every d-dimensional cone

c=(vi,...,vg) =Rsovi +- -+ Rxovy

as the positive real span of its primitive generators vy,...,vq € Z™. The only 0-
dimensional cone is the singleton {0}. A fan A is complete if | J{o : 0 € A} = R™.
If ¥ and A are complete fans and every cone of A is contained in some cone of ¥,
we say that A is a subdivision of X, and we write A < X. Every fan X can be
effectively presented by exhibiting the list of its cones, each cone being presented
by the list of its primitive generating vectors. In particular, for a complete fan X
it is sufficient to list the cones in (™). A fan A is said to be nonsingular (regular
in [9]) if every cone of A is generated by a part of a basis of Z".

Free £-groups, [11]. An £-group is an algebra (G, +, —,0,V, A) such that (G,+,—,0)
is an abelian group, (G,V,A) is a lattice, and z + (yVz) = (z+y) V (z + 2)
for all z,y,z € GG. Since f-groups form an equational class, every finite set D =
{91, ..., 9n} is a free generating set of a certain £-group, denoted A,,. In other words,
[11, p.87], g1, - - ., gn generate A, and for any £-group G and map ¢: {g1,...,9n} —
G, ¢ can be uniquely extended to an f~-homomorphism of A,, into G. A, is uniquely
determined up to f-isomorphism, and is known as the free n-generator £-group.

For Y a topological space let C'(Y,R) denote the ¢-group of all real-valued contin-
uous functions defined on Y, with the pointwise ¢-group operations +, —, V, A of R.
Here, #Vy = max(z,y) and # Ay = min(z,y). Foreachi=1,... . nlet m: R" 5> R
be the ith projection function, m; (%1, ..., 2,) = #;. As is well known, [11, 5.A], A,
is the f-subgroup of C'(R™ R) generated by m1,...,m,, and {my,...,m,} is a free
generating set of A,. One easily sees that each element of A, is a real-valued
continuous piecewise linear homogeneous function f defined on R™, and each linear
piece of f has integer coefficients.

Let X7,..., X, be distinct symbols, called variables. Let 7 be an ¢-group term.
By writing 7 = 7(X1,..., X,,) we mean that the variables occurring in 7 are all
members of the set {Xy,..., X, }. For any f-group L and elements l1,... 1, € L,
the map X; — [; uniquely extends in the usual way to an interpretation of each
term 7(X1,...,X,) as an element of L, denoted 7(l1,...,1,). In particular, the
map X; — m; extends to an interpretation 7 — f; of each term 7 = 7(X1, ..., X,)
as a function of A, , which for short we denote by f, instead of 7(my,...,m,). We
also say that 7 represents f,.

Lemma 2.1. For every {-group term 7 = 7(X1,...,Xp), let Zf;, = {x € R" |
fr(x) = 0} be the zeroset of f;.
(1) Then Zf; is a finite union of rational polyhedral cones, and the map T —
Z fr 1s effectively computable.
(2) There is an effective procedure which, over input T outputs a complete non-
singular fan X, with nin) = {01,...,04}, together with a tuple I, ... 1, of
linear homogeneous polynomials with integer coefficients such that f, = I;
on oy, for each 1 <i <gq.

Proof. (1) is an immediate consequence of f;: R™ — R being continuous piecewise
linear, each piece with integer coefficients.

Zin the sense that the greatest common divisor of the coordinates of v; is equal to 1.
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To prove (2), we first write f; in normal form (as in the proof of [11, 5.A])

(1) fr= \/ /\ lys,

1<r<t 1<s,<my

where every 5, is a linear homogeneous function with integer coefficients. Let
li,...,l; display the set of all the I.;, ’s. For every permutation g of 1,... k&, the
set of all solutions x € R” of the system of inequalities

lu) (%) < luz) (%) <o < gy (%)
is a rational polyhedral cone o,. We take the complete fan © to be the set of all
faces of all o,’s. A set of vertices for each cone in © can be effectively computed,
and for every n-dimensional cone ¢ € © we can effectively choose an element
among 1, ...,I; that agrees with f; on ¢. Using the well known desingularization
procedure [10, p.48], [9, VI.8.5] we now effectively construct a complete nonsingular
fan X, which 1s a subdivision of ©, and we attach to each cone o € E(Tn) a linear
homogeneous function I, € {ly,...,lx} with integer coefficients such that f, =,
on o. |

Lemma 2.2. Let p be a prime ideal of A, and let T, be the set of £-group terms
T1,Ta, ... representing the elements fi, fa, ... of p. Suppose T}, s enumerable. For
each j =1,2,... define the zeroset Z; = Z(|fi| + -+ -+ |f;]). We then have

(i) For every complete nonsingular fan A there exists an inder i and a cone
o€ A™ such that Z; C o.
(il) For every g € Ay g € p iff there exists i such that Z; C Zyg.

Proof. (1) By Lemma 2.1 and our hypothesis about Tj,, there is an effective pro-
cedure which, over input j outputs a finite set of rational polyhedral cones whose
union coincides with Z;. Further, given any rational polyhedral cone o, it is decid-
able whether 7; is a subset of ¢. Given the nonsingular fan A, the nonsingularity
of A is decidable. For every n-dimensional cone v € A, let v, : R™ = IR be the only
piecewise linear homogeneous function which vanishes on v and takes value 1 on
all primitive generating vectors of A, other than those of 4. From the assumed
nonsingularity of A it follows that every linear piece of v, has integer coefficients,
whence v, € A, for each v € AM™). By construction, A{vy | v € A} =0 € p;
since p is prime there exists ¢ € A" with v, € p. (In general, ¢ is not unique.) Tt
follows that for some integer ¢ > 0, some positive integer multiple of the function
|fil + - - -+ | fi] dominates vy, whence in particular, Z; C Z(v,) = 0.

(i) One direction is trivial. If Z; C Zg, then Z(|f1|+ -+ |fi]) € Z|g|, and a
routine compactness argument shows that |g| < m(|f1|+- - -+1fi]), for some integer
m > 1. Since |fi|+ -+ |fi] € p, both |¢g] and g are in p. O

For any g € A,, and u € R" we define Dyg: R” — R of g at u by
Dug(v) = tim 40V —9(w)

e—0+ €
For any fixed w € R™ we have Dyyg € A,,. We further let
[w)] = (wh nz")*

Equivalently, [[w]] is the intersection of all subspaces of R™ that contain w and
are definable via linear equations with integer coefficients. An orthonormal tuple

(VvelRr™).
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i = (uy,...,u) of elements of R™ is said to be Z-reduced if, for every 1 < i < ¢,
we have w;11 € ([[wi]] + -+ [[w]])*. For any Z-reduced tuple i we further let
(2) Pa = {f € "4” | DutDut—l e 'Dlllf =0on [[ul]] +ot [[ut]]}

By [15, 4.8],

(3) p = pg for a unique Z-reduced tuple @ = (uy,...,us)

By definition, the linear space [[ui]] 4 - - -+ [[u;]] has a basis over R consisting of
vectors vy, ..., v, in Z", which we assume to be given.

End of proof of Theorem 1.1. Write D = {d1,...,d,}. Since the AF C*-algebra
A has comparability and D is finite, its dimension group G = G(A4) is a totally
ordered abelian group with n generators. The map m; — d; uniquely extends to an
£-homomorphism 6: A,, — G. The map 6 is onto G, because D generates G. The
elementary theory of £-groups shows that the kernel of 6 is a prime ideal p of A,,.

Further, for every f-group term 7 = (X1, ..., X,,) we have

(4) O:1(my,...,mn) = 7(dy, ..., dy)

and

(5) A E (... m) €Ep e GET(d,...,dy)=0.

By hypothesis, we can effectively enumerate all pairs (a,b) € D* x D* such that
(>_a—=>_b)V0is the zero element of G. Writinga = (a1,...,ap) = (ds(1), - - -, di(p))
and b = (by,...,by) = (djy,...,dj(q) and replacing every d; by X; in (3 a —
>~ b) Vv 0, we obtain an ¢-group term

P q

Nab = Nab(X1,...,Xp) = (Z Xiwy — ZXj(t)) Vo,

i=1 j=1

and we have

6)  (ab)EP &G E ap(dy,-...dn) =05 Ay = an (7, ..., m0) € p.

Claim. The set T, of f-group terms 7 = (X1, ..., X,,) such that f; belongs to p is
enumerable.

As a matter of fact, by (4)-(5), using the abbreviation d = (dy, ..., d,) we have
(7) A Er(r,...,m)eps GEIr(r,...,m)) =0 G ET(d) =0.

Now for some a and b in D*, 7(dy,...,d,) can be effectively rewritten in
the purely additive form 7*(dy,...,d,) = > a — > b, in the sense that G |
7(dy,...,dy) = > . a—>_b. This can be easily proved by induction on the num-
ber of lattice operations V, A in 7. The basis is trivial, For the induction step,
suppose T = o1 V 3. By induction, ¢1(dy,...,dy) and oa(dy, ..., d,) have al-
ready been given purely additive forms as >_a; —) by and Y as; — > by, for some
a;,by,as, by € D*. Since P is enumerable and G is totally ordered, for some ef-
fectively given ¢ € {1,2} we can replace 7(dy,...,d,) by the purely additive form
S-a; — > by of the element e = max{oi(dy,...,dy),02(d1,...,dy)}. This yields
the promised rewriting of 7(dy,...,d,) as > a— > b.

Recalling (7) we can write

AnEr(m,...,m)EpeGEY a—Y b=0.
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Trivially, the set of pairs of tuples (a,b) € D* x D* with both (a,b) and (b,a)
members of P is enumerable. Our claim is settled.

To conclude the proof, in the light of (6), it is enough to give an algorithm which,
over any input (a, b), decides if the function nap (71, ..., m,) belongs to p. Observe
that the map (a,b) — nab(X1,..., X,) is effectively computable, and write for
short fap instead of nap(m1,...,m,). Using Lemma 2.1 construct a nonsingular
complete fan ¥ = X, with ) = {o,. ..,0q}, and the g¢-tuple of linear ho-
mogeneous polynomials with integer coefficients [1,...,{,, such that fap = I; on
each ¢;. 3 Since by our claim, T, is enumerable, let us display the the zerosets
71 D Z3 D ...in the enumeration of Lemma 2.2(i), and wait for the first pair of
integers i = 1,2,3,...and j € {1,... ¢} yielding a zeroset Z; and a cone o; € ()
such that 7; C ;. It follows that
(8) fab ch < lj(Vl):"':lj(Vr)IO.

Indeed, from fanb —1; = 0 on 0; C Z; we get fap —I; € p, by Lemma 2.2(ii).
Therefore, far, € p & [; € p. The linearity of [; ensures Dy, f = f for every w € R”.
From (2)-(3) it follows that [; € p < [; € pg < {; = 0 on [[wi]] + -+ + [[us]] &
lij(vi) = -+ = lj(v,) = 0, as required to settle (8). Since the tuple vq,...,v,
in Z” is given, the computations of the integers [;(vy)--- = [;(v,) can be done
effectively. Lemmas 2.1-2.2 ensures that all constructions are effective, whence the

above procedure decides whether (a,b) € P.
The proof of Theorem 1.1 is complete.

Remarks. 1. In general, the tuple of integer vectors vy,...,v, is not effectively
computable from a computer program [ enumerating P. Thus our decidability
result is highly nonuniform: there i1s no mechanical procedure upgrading I to a
computer program I deciding P.

2. The case when p is maximal was dealt with in [13, 6.1].

Dropping the finiteness assumption. Given an AF C*-algebra A with compa-
rability, suppose D C D(A) to be an infinite generating set for G/(A). In this section
we shall see that Theorem 1.1 no longer holds. There may be various reasons for the
Godel incompleteness of a presentation of A by generators and relations of G/(A).

First of all, the identification in Theorem 1.1 of D C D(A) C G(A) with a set
of symbols in a finite alphabet is no longer possible: For certain A, no matter how
“reasonably” we code each d € D as a word w(d) over a finite alphabet €, the
Godel incompleteness of the resulting presentation of A is simply due to the fact
that the range of the function w is an undecidable subset of the set 2" of words
over €.

For instance, let R ={1/2,1/3,1/5,...} be the set of reciprocals of prime num-
bers. Let D C R be a Godel incomplete subset of R. Let G be the subgroup
of @@ generated by the elements of D. Code the elements of D in the usual way,
using the binary notation. Let A be the UHF-algebra given by G(A) = G with the
stable scale G1. Let P be the set of all pairs of tuples of words coding those pairs
((a1,...,ax), (b1,..., b)) € D¥ x D' such that G(A) Ea;+--+ax < by +---+b}.
Then P is Godel incomplete.

3direct inspection on f,, shows that one can always assume that there are at most two distinct
elements among the [;, and one of them is the zero function.
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There may be deeper reasons for the Godel incompleteness of a presentation of
an AF C*-algebra A with comparability:

Theorem 2.3. There exists an AF C*-algebra A with comparability, together with
a generating set D C D(A) of G(A), and a one-one map ~ of D onto N = {1, 1,
,- ..} such that the set

P={(@1,...,@m),(b1,...,bn)) EN"XN" |G(A) E a1+ +am <bj+--+b,}
15 enumerable and undecidable.

Proof. Let N = {1,2,3,...}. Let P be an enumerable undecidable subset of odd
prime numbers. Let G denote the group of all polynomials p(z) = a;z™ + .-+ +
a;az™* with exponents my > - -+ > m; in the complementary set N\ P, and integer
coefficients, defined on the halfline Rt = {# € R | # > 0}. As an abelian group,
G is freely generated by the set M of monomials 2™ for m € N\ P. Forp € G
a nonzero polynomial, the first nonzero coefficient a; in p is said to be the leading
coefficient of p. For any two polynomials p,q € G we write p < ¢ iff p(z) < ¢(x)
for all suitably large 2 € R*. The binary relation < endows G with the structure
of a totally ordered abelian group, also denoted G. The positive cone Gt is given
by the zero polynomial together with those polynomials whose leading coefficient is
> 0. Let A be the AF C*-algebra with comparability, whose scaled dimension group
G(A) coincides with G equipped with the stable scale D(A) = GT. As a generating
set D C D(A) for G(A) let us choose the set

D={z"| ke N\ P}U{2"* | k € P}.
Observe that D is redundant: indeed, from k € P = k+ 1 € N\ P it follows that
the subset of D given by {z* | k € N\ P} already generates (G. Taking advantage
of this redundancy, we define the one-one map ¢ from N onto D by
zk if k e N\ P
g ) ={ Sn i
k times

Let us denote by ~ the inverse of +. Thus

¥ = ... forkeN\P, and 2zFt1= ..., forkeP.
S—— S——

k times k times
Our choice of D and of the coding map ~ determines a presentation P of A.
Specifically, P consists of all pairs of tuples of finite strings of strokes such that the
inequality
QTR I S Y G TR I ! (N TTIR I SR A (RTINS
S—— S—— S—— S——
py tlmes pm tlmes q1 times g- times

holds in (. For every n € N define the pair T,, = (vn, wy) of tuples by

(10) To= (w0, mecor e )

n times n+41 times n+1 times
Then both (v,, wy) and (wy,, v,) belong to P if and only if n € P. From the assumed
enumerability of P we get the enumerability of the subset @ = {T,, | n € P}. Let
@1 C @5 C ... be an enumerable sequence of increasing finite subsets of @ whose
union is Q. Since M 1is free generating in the underlying free abelian group of
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G, it follows that a pair of tuples of strings of strokes ((@r,...,@m), (b1,...,bn))
belongs to P together with its flip ((b1,...,b,), (@7, ..., @n)) if and only if for some
t = 1,2,3,... using the inequalities in Q; and substituting equals for equals we
can derive in G both inequalities ay + - -+t < by + -+ by and by + -+ b, <
a1 + - -+ a,,. This shows that P 1s enumerable.

By way of contradiction, suppose P is decidable. Then in particular we can
decide which pairs T, = (vn,wy) belong to P. Thus we can decide if n is such
that v, = w,, which 1s a contradiction with the assumed undecidability of P. This
completes the proof of Theorem 2.3. |

Remark. While most AF C*-algebras with comparability existing in the litera-
ture have an enumerable presentation, uncountably many non-isomorphic AF C*-
algebras with comparability do not have an enumerable presentation: this trivially
follows from the existence of only countably many Turing machines.

3. PROOF OF THEOREM 1.2

A generalized effect algebra, [5, 1.2.1], is a partial (associative commutative)
monoid (E, 0, +) satisfying (i) a+b =a+c=>b=rc¢,and (ii) a+b=0=a = b= 0.
The stipulation a < b iff 3¢ € E with a+c¢ = b equips F with a partial order, making
0 is the smallest element of E. We say that (E,0,4) is totally ordered if for any
two elements a,b € F we either have a < b or b < a.

This section is devoted to a proof of Theorem 1.2, stating that Elliott’s totally
ordered partial monoids coincide with countable totally ordered generalized effect
algebras. The first step is the construction of the Baer enveloping group of EF, via
the following variant of [1].

Given a totally ordered generalized effect algebra (/,0,4), let us define the
following binary relation & on the set E* of tuples of elements of E:

(xla"'axm) ~ (yla"'ayn)
iff there is a matrix (z;;) := (255 : 1 <i<m, 1 <j < n) of elements of E such that
ri=zn+ - Fzpandy =z;+ -+ foralli=1,... . mand j=1,...,n.
The matrix (z;;) is said to be the Riesz matriz for (z1,...,2m) and (y1,...,¥n).

Proposition 3.1. Let E = (E,0,4) be a totally ordered generalized effect algebra.
We then have:

(1) E has the Riesz decomposition property, stating that, whenever xq + -+ -+
Tm = Y1 + -+ Yn there are z;; € E such that x; = z;1 + -+ + 2 and
Yi =215+ -+ 2my, foreachi=1,... mandj=1,... n.

(2) The relation m is an equivalence relation between tuples of E.

(3) Denote by ((x1,...,2m)) the equivalence class of the tuple (x1,...,2m),
and set

(1, ym) + (W1, Yn)) = (B2, oy Ty Y1y - -5 Un))-

Then the operation + makes the set E* [ = of equivalence classes of tuples
of E into a cancellative abelian monoid

M=M(E) = (E*/~, (0), +).

Writing p < q ioff there isr € M with p4+r = q, M becomes a totally ordered
monoid.
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(4) Up to isomorphism of ordered groups, M is the positive cone of a unique
totally ordered abelian group B(FE), called the Baer o-group of E. Identify-
ing E with a subset of M = B(E)* via the map, e v (e), E turns out to
be a scale of B(E).

Proof. Condition (1) is easily verified, because F satisfies the condition
c=a+b=3a’,b' € E such that o’ <a,t/ <b,c=d +V,
and the Riesz decomposition property follows from this condition.

To prove (2), skipping all trivialities suppose (%1,...,2m) = (Y1,...,¥s) and
(y1,...,4n) = (21,...,2). There are two Riesz matrices (£;;) and (u;z) with 7 =
1,...,m,j=1,...,n,and k = 1,...,] such that

o xi =1+ +iin,

o byt +itmy =y = ui o Fuy

® Zp =Uip+ -+ Unk
for all é,7,k. By (1), for each j = 1,... n, there is a Riesz matrix (w‘g ) s =
1,...,m, t =1,...,1 such that #;; :w‘31+~~~—|—w‘3l and ujk:w{k—|—~~~—|—wfnk
forallz =1,...,mand k = 1,... 0. For fixed i = 1,...,mand k = 1,...,] let
us now define vy, = wilk + -+ wh. Since z; =t + o+ Ftin = (w} +
ot wh) (W o wd) o+ (W + -+ wh), we see that v exists in E.
Then (v;1,) is a Riesz matrix for the two tuples (z1,...,2y) and (21, ..., z), whence
(%1,...,&m) = (21,...,21). This completes the proof of (2).

To prove (3), following Baer [1], for any w = (a1, ...,a5),v = (by,..., b)) € E*,
their concatenation is the tuple w — v = (ay, ..., ax, b1, ..., b;). Let us agree to say
that v 1s a flip of w if for some i = 2,..., k the element ¢ = a;_1 + a; exists in F
and v is obtained replacing the two consecutive terms a;_1, a; of w by the term a.
We equivalently say that w is a flop of v. Two tuples v, w € E* are equivalent, in
symbols v ~ w, if there is a path consisting of tuples vg = v,v1,...,0y—1,0, = W
where each v;41 is either a flip or a flop of v;. Letting [w] denote the equivalence
class of w, the stipulation [v] 4+ [w] = [v — w] makes E*/ ~ into a abelian monoid

N(E).

Claim. The two equivalence relations & and ~ are identical.
As a matter of fact, suppose (#1,...,Zm) & (¥1,...,yn). There is a Riesz matrix
(zi;) for these two tuples, and we can write

($1,~~~,l‘m) ~ (211,212,~~~,Z1n,221,~~~,Zzn,~~~2m1,~~~,2mn)~

For any two tuples a,a’, if a’ is obtained by permuting the components of a, then
a~ da', by [5, 1.7.10]. Tt follows that

(211,212,...,Zln,Zzl,...,Zzn,...,zml,...,zmn)
~ (211,221,...,Zml,le,...,Zmz,...,Zln,...,Zmn) ~ (yl,...,yn),
and (21,...,2m) ~ (Y1, .., yn). Conversely, suppose we are give two tuples
(B1,..., Bp_1,Tp, Tpy1, .-, &m) and (1,..., Zp_1,Lp+ Tpt1, ..., Tm).
Fori=1,...;mand j=1,...,m—1 we define the matrix, (z;;), of elements of £

by
o zi; =0 ifj=1,...,p—1,orj=p+1,...,m—landanyi=1,...,m;
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eforj=p zip=-=2_1p=4pt2p == 2Zmp = 0 and z,, = z, and
“p+l,p = Tp+1-

Then (z;) is a Riesz matrix for the two tuples (21,...,%p-1,2p, Tpt1,- -, Tm)
and (z1,...,2Zp—1,&p + Tp41, .- ., Tm), Whence they are ~-equivalent. Assume now
(Z1,...,&m) ~ (Y1, ., Yn). Since & is an equivalence relation, the definition of ~
is to the effect that (z1,...,2m) = (y1,...,Yn), and the claim is settled.

Having just proved that M (E) = N(F), the proof of (3) and (4) now follows as
a particular case of the general theory in [5, 1.7.6-1.7.14]. O

Proposition 3.2. Let A be an AF C*-algebra with comparability. Let D(A) be its
partial Elliott monoid, G(A) its dimension group, and B(D(A)) the Baer o-group
of D(A). We then have

(1) D(A) is a countable totally ordered generalized effect algebra.

(2) Identifying D(A) with a scale of B as in Proposition 3.1(4), the iden-
tity map of D(A) uniquely extends to an isomorphism of the Baer o-group
B(D(A)) onto the dimension group G(A).

Proof. (1) By [7, 5.1] or [6, chapters 7-8], D(A) is a scale of G(A), whence D(A) is a
countable partial abelian monoid satisfying the cancellativity and positivity axioms
of generalized effect algebras. D(A) is totally ordered because A has comparability
of projections.

(2) By [6, 7.4] or [7, 4.3]. O

To conclude the proof of Theorem 1.2 we now show that every countable totally
ordered generalized effect algebra F arises as the Elliott partial monoid D(A) of
some AF C*-algebra A with comparability.

Proposition 3.3. Let E be a countable totally ordered generalized effect algebra,
with its Baer o-group B = B(FE) D E. Write B as the direct limit (in the category
of scaled dimension groups and positive scale-preserving one-one® homomorphisms)
of a countable direct system S(FE) given by’

(11) On: ZI(p(n)) = Z7H (pn + 1))
in such a way that E = ¢n oo [0, Pn]-
Let A(E) be the norm closure of the direct limit of the system S'(E) of finite-
dimensional C*-algebras
(12) ¢n: M(p(n)) = M(p(n +1)).
We then have

(i) For any AF C*-algebra A with comparability, A(D(A)) = A.
(i1) Conversely, for any countable totally ordered generalized effect algebra E,
DA(E)) = E.

Proof. (1) By definition, A is the limit of a direct system
(13) Un: M(p(n)) = M(p(n+ 1))

4injectivity follows from the fact that B is ultrasimplicial [8, 2.2]

Snotation from [6, p.43]
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of finite-dimensional C*-algebras. Each t,, is a suitable rectangular matrix with
integer entries > 0. By Elliott’s theory [7, 5.1], the direct system of scaled simplicial
groups

(14) b2 27 (P(n)) = Z7 4 (p(n + 1))
has the property that

(15) G(A) = hr{n Ut LT — LT
and

(16) D(A) = | J¥n [0, 5n].

Since A has comparability, G(A) is totally ordered and the ¢, can be assumed to
be injective, [8]. By Proposition 3.2, D(A) is a totally ordered generalized effect
algebra, which is a scale of B(D(A)) = G(A). Now A(D(A)) is defined following
Elliott’s construction (see the proof of [7, 5.5]) of an AF C*-algebra whose Elliott’s
partial monoid coincides with D(A). Since both A(D(A)) and A have isomorphic
Elliott’s partial monoids, by Elliott’s fundamental result [7, 4.3], A(D(A)) = A.

(ii) By Proposition 3.1(4) E is a scale of the countable totally ordered abelian
group B = B(FE). The pair (B, E) satisfies the hypotheses of [7, 5.5]. Thus there
is an AF C*-algebra A such that D(A) = F and G(A) = B. By [7, 4.3], A is
uniquely determined by E. Direct inspection in the proof of [7, 5.5] shows that
A= A(F). O

We have shown that the maps A — D(A) and E — A(F) yield a one-one corre-
spondence between (isomorphism classes of ) countable totally ordered generalized
effect algebras and (isomorphism classes of ) AF C*-algebras with comparability.

The proof of Theorem 1.2 is complete.

Remark. The map A — D(A) is part of a covariant functor such that any
isomorphism of D(A) and D(A’) is induced by an isomorphism of A and A’, [8, 5.1],
but D is not a categorical equivalence between AF C*-algebras with comparability
and countable totally ordered generalized effect algebras: e.g.; every automorphism
of the C*-algebra of 2 x 2 complex matrices is mapped by D into the identity
function of {0, 1, 2}.
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