BJARNI JONSSON Products of Classes of
CONSTANTINE TSINAKIS Residuated Structures

Abstract. The central result of this paper provides a simple equational basis for the
join, ZRLV LG, of the variety LG of lattice-ordered groups (£-groups) and the variety
IRL of integral residuated lattices. It follows from known facts in universal algebra
that TRLV LG = ITRL X LG. In the process of deriving our result, we will obtain simple
axiomatic bases for other products of classes of residuated structures, including the class
IRLX LG, consisting of all semi-direct products of members of ZRL by members of LG.
We conclude the paper by presenting a general method for constructing such semi-direct
products, including wreath products.
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1. Introduction

Let ZRL denote the variety of integral residuated lattices, ZRP the class of
integral residuated partially ordered monoids, £G the variety of ¢-groups and
PG the class of partially ordered groups. (We refer the reader to Section 2 for
the precise definitions of these concepts.) The central result of this paper
provides a simple equational basis for the join ZRLV LG. En route, we
obtain simple axiomatic bases for three other classes of residuated structures,

IRP x PG, TRLxLG, TRPxPG.

The preceding notation requires additional explanation. A structure with
identity is a relational structure A having as a reduct a unital groupoid
(A, -, e) such that {e} is a subuniverse of A. Inner direct multiplication and
inner semi-direct multiplication are partial binary operations defined on the
set of all substructures of a structure A with identity.

DEFINITION 1.1.

1. For substructures X and Y of a structure A with identity, the inner
direct product X ® Y is the lattice join X V'Y — taken in the lattice of
substructures of A — if the map (z,y) — =z -y is an isomorphism from
X XY onto X VY, but is otherwise undefined.
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2. The direct product X x Y of two classes X and Y of structures with
identity of a common similarity type, is defined to be the class of all
structures A such that A = X ® Y for some substructures X € X and
Yc)Yof A.

DEFINITION 1.2.

1. For substructures X and Y of a structure A with identity, the inner
semi-direct product X®,Y is the lattice join X VY — taken in the
lattice of substructures of A — if there exists an endomorphism ¢ of
X VY such that g(XVY)=Y and g7 '(y) = Xy =yX forally € Y,
and is undefined otherwise.

2. The semi-direct product X x;Y of two classes X and Y of structures
with identity, of a common similarity type, is defined to be the class of
all structures A such that A = X®,Y for some substructures X € X
and Y € Y of A.

We remark that, in the familiar case of groups, A = B ® C if and only
if B and C are normal subgroups of A, A = BC and BNC = {e}. Also,
A =B®,C if and only if B is a normal subgroup of A, A = BC and
BNC = {e}.

The primary purpose of the paper is to establish the following results.

Theorem A (See Theorem 6.2.) An RL A belongs to TRLXLG if and
only if it satisfies azioms (P1) and (L1).

(P1) e/z =1z\e

(L1) (z\e Vy\e)((z\e Vy\e)\e) = e
Theorem B (See Theorem 7.7.) An RL A belongs to TRL x LG if and
only if it satisfies axiom (L2).

(L2) (z\e Vy)((z\eVy)\e) = e
Theorem C (See Theorem 4.5.) An RP A belongs to IRP x5 PG if and
only if it satisfies azioms (P1) and (P2).

(P1) e/ =1z\e

(P2) (z\e)((z\e)\e) = e

Theorem D (See Theorem 5.5.) An RP A belongs to TRP x PG if and
only if it satisfies axioms (P8) and (P4).
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(P3) z(z\e)(y\e) = (y\e)z(z\e)
(P4) z\e <y implies y(y\e) = e

In Section 8, we use Theorem B above to obtain a novel proof of the fact
that the variety of generalized BL algebras is a subvariety of TRL V LG.
This result was originally obtained in [7]. The main result of Section 9,
Theorem 9.4, presents necessary and sufficient conditions for constructing
a semi-direct product of an IRP by a PG. We use this result in Section 10
to construct an important class of members of ZRP %X PG, namely wreath
products of IRPs by PGs.

2. Basic facts about residuated structures

We refer the reader to [3] and [14] for basic results in the theory of residuated
lattices. Here, we only review background material needed in the remainder
of the paper.

A binary operation - on a partially ordered set (A4, <) is said to be resid-
uated provided there exist binary operations \ and / on A such that for all
z,y, 2 € A,

z-y<z iff <z/y iff y<az\z

We refer to the operations \ and / as the left residual and right residual of -,
respectively. As usual, we write zy for z - y and adopt the convention that,
in the absence of parenthesis, - is performed first, followed by \ and /, and
finally by v and A.

The residuals may be viewed as generalized division operations, with
x/y being read as “x over y” and y\z as “y under z”. In either case, x is
considered the numerator and y is the denominator. We tend to favor \ in
calculations, but any statement about residuated structures has a “mirror
image” obtained by reading terms backwards (i.e., replacing z -y by y - =
and interchanging x/y with y\z).

We are primarily interested in the situation where - is a monoid operation
with unit element e. In this case, we add the monoid unit to the similarity
type and refer to the resulting structure A = (4,-,\,/,¢, <) as a residuated
partially ordered monoid or a residuated po-monoid for short. If, in addition,
the partial order is a lattice order, we obtain a purely algebraic structure A =
(A, V, A\, /,e) called a residuated lattice-ordered monoid or a residuated
lattice for short.
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Throughout this paper, the class of residuated lattices will be denoted by
RL and that of residuated po-monoids by RP. We adopt the convention that
when a class is denoted by a string of calligraphic letters, then the members
of that class will be referred to by the corresponding string of Roman letters.
Thus an RL is a residuated lattice, and an RP is a residuated po-monoid.

The existence of residuals has the following basic consequences, which
will be used in the remainder of the paper without explicit reference.

PRrROPOSITION 2.1. Let A be an RP.

1. The multiplication preserves all existing joins in each argument; i.e.,
if VX and Y ezist for X, Y C A, then V ,cx yeyv (2y) ezists and

(Vx)(VY)= V@

zeX,yey

2. The residuals preserve all existing meets in the numerator, and convert
existing joins to meets in the denominator, i.e. if \| X and \Y exist
for X,Y C A, then for any z € A, N\,ex(z\2) and A ey (2\y) eaist

and
(\/X)\z=wé((x\z) and z\(/\Y) = /\(z\y)

yey

3. The following identities (and their mirror images) hold in A.

(a) (z\y)z < z\yz
(b) z\y < zz\zy
() (z\y)(y\2) < z\z

(d) zy\z =y\(z\2)

(e) z\(y/z) = (z\y)/z

(f) z(z\z) =2

(g) (¢\2)* =2\z

PROPOSITION 2.2. A structure A = (4,-,\,/,e,<) is an RP if and only if
(4,-,e,<) is a po-monoid and for all a,b € A,

(i) the maps z — a\z and x — z/a are isotone;
(i) a(a\b) < b < a\ab; and
(iii) (b/a)a < b < ba/a.
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The preceding result immediately implies that the class RL is a finitely
based variety, for, with the aid of the lattice operations, properties (i) — (iii)
can be expressed as identities.

Given an RL A = (4,V,A,+\,/,e) or an RP A = (4,-,\,/,¢,5), an
element a € A is said to be integral if e/a = e = a\e, and A itself is said to be
integral if every member of A is integral. We denote by ZRL the variety of
all integral RLs, and by ZR P the class of all integral RPs. An element a € A
is said to be invertible if (e/a)a = e = a(a\e). This is of course true if and
only if @ has a (two-sided) inverse a~!, in which case e/a = a=! = a\e. The
structures in which every element is invertible are therefore precisely the #¢-
groups and the po-groups. Perhaps a word of caution is appropriate here. An
¢-group is usually defined in the literature as an algebra G = (G, A, V, -, 71, e)
such that (G, A, V) is a lattice, (G,-, 7!, e) is a group, and multiplication is
order preserving (or, equivalently, it distributes over the lattice operations).
The variety of £-groups is term equivalent to the subvariety of RL defined by
the equations (e/z)z ~ e ~ z(x\e); the term equivalence is given by z 7! =
e/r and z/y = zy~!, z\y = v~ 'y. We denote by LG the aforementioned
subvariety and refer to its members as £-groups. Lastly, PG will denote the
class of all po-groups.

We remark, for future reference, that R.L is a congruence permutable va-
riety. This can be demonstrated by the Mal'cev term p(x,y,z) =
[z V (2/y)x] A [z V (z/y)z]. Another key property — established in [3] (see
also [14]) — is that each RL A is e-regular, that is, each congruence relation
of A is determined by its identity block. We sketch the proof of this fact.
For a € A, we define the notion of right and left conjugation by a as follows:
Ao(z) = [a\(za)] A e and py(x) = [(az)/a] A e, respectively. These are unary
operations on the universe of A that correspond to the analogous concepts
from group theory. In analogy with groups, a subalgebra H of A is called
normal if Ag(x), po(x) € H for alla € A and all x € H.

If © is a congruence relation of A, then [e]e — the ©-block of e — is
an (order) convex normal subuniverse of A. Conversely, if H is a convex
normal subuniverse of A, then Oy = {(a,b) : a\bAb\aAe € H} is a
congruence relation of A. Moreover, the maps H — Op and O — [e]o are
mutually inverse isomorphisms between the lattices of congruence relations
and convex normal subalgebras of A.

We close this section by calling attention to some useful applications of
a basic principle from universal algebra. The principle is this: every iso-
morphism between two structures preserves all definable subsets, operations
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and relations. For example, every order isomorphism between two lattices
A and A’ is a lattice isomorphism:

h:(A,<) = (A,<) implies h: A = A’
PROPOSITION 2.3. If A and A’ are RLs or RPs, then
h:(A e <)= (A, e <) impliesh: A=A’

PROOF. The operations of residuation in an RP A = (4,-,/,\,¢,<) are
definable in the po-monoid (4, -, e, <), and the join and meet in a lattice
A = (A, V,A) are definable in the poset (4, <). ]

COROLLARY 2.4. Suppose A is an RL or an RP. For any invertible element
c € A, the map = — x°¢ = ¢ 'xc is an automorphism of A. (In what follows,
we will refer to such a map as an inner automorphism of A.)

PROOF. We need only show that the map 7.(z) = z° is an automorphism
of the po-monoid (A4, -, e, <). From the fact that both ~,0~,-1 and v.-1 0,
are equal to the identity map, it follows that ~y. is bijective. Trivially, ~.
preserves the multiplication. Finally, from the fact that the multiplication
is isotone it follows that -, is isotone, and since this is also true of its inverse
~.~1 we conclude that 7. is an order isomorphism. ]

3. Facts from universal algebra

The results of this section are not used in the remainder of the paper, but
they motivate and provide a context — in the realm of universal algebra —
for the main results of this paper.

We start by noting that the varieties £G and IRL are disjoint, that is,
their intersection is the least variety of residuated lattices. These varieties
are examples of independent varieties in the sense of the following definition.

DEFINITION 3.1. ([10]) Two varieties U and V, of the same similarity type,
are said to be independent if there exists a binary term * such that

UE v *xv1 =vg, VEyg*v =,

It is shown in [10] that if i/ and V are independent varieties, then they are
disjoint and U V V = U x V. The following result provides a partial converse.

THEOREM 3.2. If U and V are disjoint subvarieties of a congruence per-
mutable variety, then U and V are independent and UVYV =U x V.
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ProoF. The equational theory of & V V may be regarded as a congruence
relation on the term algebra Tm, say 7' = Th(U V V). By hypothesis, U vV V
is congruence permutable, whence it follows that any two congruence rela-
tions on Tm that contain T' permute. This applies, in particular, to the
congruence relations R = Th() and S = Th(V). Thus RV S = R; S. The
algebra Tm/(R V S) is in both U and V, and is therefore trivial. In other
words, RV S = R; S is the universal relation. In particular, if vy, v1 are arbi-
trary variables, then vy RkSv, for some term . Since the equational theories
are fully invariant congruence relations, the term s may be taken to contain
no variable distinct from vy and vy. Writing vg * vy for , we therefore have
voR(vg * v1)Sv1, or equivalently, U F vy *x v1 = vg and V Fug * v1 = v;. ]

A procedure is described in [18] for obtaining an equational basis for
the join of two independent varieties from equational bases of the joinants,
assuming that the term * is known. A modified version of this procedure is
given below.

THEOREM 3.3. Suppose U and V are independent varieties with equational
bases U and V. Then the following equations form a basis for U vV V.

1. The equations

(a) (vo *v1) * va = vg * (V1 * vg)
(b) (vg *v1) * va = Vg * Vo
(c) vxvmwv

2. All equations of the form
)\(UO*U)O;’U*wl,"') z/\('007'1)17'“)>|<)‘(UJO>U}17"')

with A an operation symbol
3. All equations sxv=txv withs=tinU
4. All equationsvxs~uv*t withs=tinV

ProOOF. Every algebra A € U vV V is isomorphic to a direct product B x C
with B € i and C €V. The operation * in B x C is given by

(b,c) x (W,d) = (bxb,cx ) = (b,c).

Under the operation *, B x (' is therefore a rectangular band, and hence, so
is A. In other words, the identities in (1) hold. Straightforward calculations
show that all the identities in (2)-(4) also hold.
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Suppose next that A is an algebra that satisfies all the identities in
(1)-(4). By (1), the reduct (A4, *) is a rectangular band. Consequently the
relations R and S defined by

xRy iff x xz =y x 2z, for some z € A,

xSy iff z+x = z+y, for some z € A

are congruence relations on (A,*) and the map h(z) = (z/R,x/S) is an
isomorphism from (A4, *) onto (4, *)/R x (A, *)/S. From condition (2) above
we see that R and S also preserve the basic operations in A, and hence that
h: A= A/R x A/S. Finally, for any equation s=tin U, AF sxv=txuv,
and hence A/R F s = t, and similarly A/S F s = ¢ for every identity s = ¢
in V. [

We observed in Section 1 that RL is congruence permutable, and hence
so are the varieties £G and ZRL. It follows from Theorem 3.2 that these
varieties are independent. It is actually easy to verify directly that the term
voxv1 = [vo(vo\e)][(v1\e)\€] satisfies the conditions of Definition 3.1. Hence,
the preceding result provides a finite basis for the variety ZRL x LG. As we
stated in Section 1, the primary purpose of this paper is to provide simple
axiomatic bases for this variety and the three related classes of residuated
structures. ’

4. A basis for TRP x, PG

For the convenience of the reader, we list here the aforementioned axioms
(P1) - (P4), (L1) and (L2).

(P1) e/x =x\e

(P2) (z\e)((z\e)\e) =€

(P3) z(z\e)(y\e) = (y\e)z(x\e)
(P4) z\e < y implies y(y\e) =€
(L1) (z\e Vy\e)((z\e Vy\e)\e) = e
(L2) (z\e Vy)((z\eVy)\e) =e

The properties (P1) - (P4) do not involve the lattice operations, and can
therefore be applied to RPs. Axiom (P2) states that every element of the
form a\e, for some a € A, is invertible in A. This, of course, implies that
C = {a\e : a € A} is the set of invertible elements of A. Assuming that A is
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an RL, axiom (L1) implies (P2) and states that, in the presence of (P1), C
is closed under joins. It will be shown below that properties (P4) and (L2)
are equivalent, when applied to RLs, and that (L2) implies (P1) and (P3).

The main result of this section is Theorem 4.5, which asserts that the
RPs in TRPx ;PG are precisely those satisfying (P1) and (P2). The proof
of the theorem will be preceded by three lemmas. The notation below will
be in effect throughout the remainder of the paper.

NOTATION 4.1. Given an RL or an RP A, we fiz the following notation.
1. B is the partial substructure of A whose universe is the set of all

integral elements of A.

2. C is the partial substructure of A whose universe is the set of all
invertible elements of A.

3. f(a) = a(a\e), for all a € A.
4. g(a) = (a\e)\e, for alla € A.

LEMMA 4.2. Let A be an RP.

1. Each element a € BC has a unique representation a = bc with b € B
and ¢ € C; namely b= f(a) and c = g(a).

2. BC = CB. In fact, for b€ B and ¢ € C we have b® € B and bc = cb®.

3. B is a convex substructure of A that is invariant under all inner au-
tomorphisms by elements of C.

4. C is a substructure of A.

5. Let X and Y be substructures of A such that X is an IRP andY is a
PG. IfA=XY, then X =B and Y =C.

PROOF.
(1) If a = bc with b integral and c invertible, then a\e = c\(b\e) = ¢!,
hence g(a) = ¢ *\e = c and b = ac™! = a(a\e) = f(a).

(2) By Corollary 2.4, the map z — z¢ is an inner automorphism of A,
for all ¢ € C'. This immediately implies that the set B is invariant under
each such automorphism. Indeed, if b € B and ¢ € C, then b%\e = b%\e¢ =
(b\e)¢ = e =e.

(3) The set B of all integral elements of A is easily seen to be convex,
with e as its top element. For z,y € B, the element z/y lies between the
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elements z/e = = and e/y = e, and is therefore in B; by symmetry, so is
y\z.

(4) The set C of all invertible elements of A is obviously closed under
multiplication, and the inverse ¢! of an invertible element c is also invertible.

Closure under the residuations follows, since, for invertible elements ¢y and
1, cpfc1 = cocl_1 and co\c; = calcl.

(5) Since the IRP X and the PG Y are substructures of A, they are
substructures of B and C, respectively. Noting that A = XY, we infer by
(1) above that X =B and Y = C. ]

LEMMA 4.3. For any RP A, BVC =B ®,C.

Proor. Consider two elements ag = bgcg and a7 = bicq, with by,b; € B
and ¢g,c¢; € C. Note first that for all c € C and all z,y € A, c(z/y) = cx/y
and (y\z)c = y\cz. Using these facts, easy calculations yield the following
equalities:

apgay = (bobfo)(cocl)
ao\ar = (bo\b1)® (c5ler)
afag = (b/by" Yercy')

It follows that the set BC' is closed under the basic operations of A, that
is, it is the universe of a substructure of A. Obviously that substructure is
BvC.

We next note that g is an endomorphism of B v C. Indeed, with ag, ay
as before, we have g(ap) = ¢ and g(a1) = c1, while g sends apai, ap\a1
and a1 /ag into cocy, ¢ 1oy and cicy L respectively. Lastly, it is clear that
gBVC)=Cand g t(c)=Bc=cBforall ceC. ]

LEMMA 4.4. Suppose A is an RP that satisfies (P1) and (P2). Then, for
alla € A,

(i) a = f(a)g(a),
(ii) f(a) € B and g(a) € C.
PRrooF. By (P2), the element g(a) is invertible and

f(a)g(a) = a(a\e)((a\e)\e) = ae = a.

Also, f(a)\e = a(a\e)\e = (a\e)\(a\e) = e. The last equality holds because,
by (P2), a\e is invertible. By (P1), e/f(a) = e. Hence f(a) is integral. m
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We are now ready to establish the main result of the section.

THEOREM 4.5. An RP A belongs to ITRPxsPG if and only if it satisfies
(P1) and (P2).

ProoF. If A belongs to ZRPx PG, then every element ¢ € A is of the form
a = bc, with b an integral element and ¢ an invertible element. Hence e/a
and a\e are both equal to ¢!, and (a\e)((a\e)\e) = e. Thus (P1) and (P2)
hold.

Conversely, suppose that the two identities hold. Then Lemma 4.4 im-
plies that for all a € A, f(a)g(a) = a, f(a) € B and g(a) € C. Thus A = BC
and A = B®,C by Lemma 4.3. [

5. A basis for ZRP x PG

The main result of this section, Theorem 5.5, shows that an RP is a member
of IRP x PG if and only if it satisfies (P3) and (P4).

LEMMA 5.1. If A is an RP in which C is an order filter, then for all elements
by, b1 € B and ¢y, 1 € C,
boco < bicr iff bo < by and cp < ¢y.

PROOF. If bycy < bycy, then cocl_1 < bg\b1, so bo\b; is in the filter C.

The integral element bp\b; is therefore invertible, from which it follows that
bo\b1 = e and cocl_1 < e, and therefore by < by and ¢y < ¢1. The opposite
implication holds in every RP. .
LEMMA 5.2. An RP A belongs to IRP x PG if and only if

1. A satisfies (P1) and (P2);

2. the set C is an order filter in A; and

3. be=cb forallbe B and c € C.

PROOF. Suppose A € ZRP x PG. Then A = B® C. The identities (P1)
and (P2) hold by Theorem 4.5, and the direct factor C is an order filter.
Also, the two factors commute point-wise under the multiplication. Thus
(1)-(3) hold.

Conversely, suppose (1)-(3) hold. By Theorem 4.5, A = B ®, C. Hence
the map h(b,c) = bc from B x C into A is bijective. By (3) and Lemma 5.1,

h:(B,e <)% (C,e<)) = (A4, e5),
whence, by Proposition 2.3, h: B x C = A. [ |
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LEMMA 5.3. In any RP,

(i) If x/x is invertible, then xz/z = e.
(i) If z/z = e = x\z, then e/x = x\e.

PROOF. (i) Use Proposition 2.1(3g) and the fact that invertible elements are
cancellable.

(ii) We have z(y/z) < xy/z, hence, in particular, z(e/z) < x/x = e. It
follows that e/z < z\e. The opposite inequality follows by symmetry. ]

Condition (P4) is obviously equivalent to the conjunction of (P2) and
property (2) in Lemma 5.2. We now show that (P4) implies (P1).

COROLLARY 5.4. Any RP that satisfies (P4) also satisfies (P1) and (P2).

PrOOF. Note first that (P2) is a special case of (P4); just let y = z\e.
Next, for y > e, (P2) and (P4) give (y\e){(y\e)\e) = e and y(y\e) = e,
respectively. It follows that y\e has both a left inverse and a right inverse
and hence it is invertible, with inverse y = (y\e)\e. Now the elements z/x
and z\z are always above e, and they are therefore invertible in the present
situation. By the preceding lemma, this implies that z/z = e = z\z, and
hence that (P1) holds. |

THEOREM b5.5. An RP A belongs to ITRP x PG if and only if it satisfies
(P3) and (P4).

Proor. (P3) and (P4) trivially hold in each of the classes ZRP and PG,
and therefore hold in their direct product.

Assuming that A satisfies the two axioms, we need to show that con-
ditions (1)-(3) in Lemma 5.2 hold. By Lemma 5.4, (P4) implies (P1) and
(P2). In the presence of (P1) and (P2), conditions (2) and (3) are equivalent
to (P4) and (P3), respectively. |

6. A basis for ITRL x, LG

Given an RL A, we denote by A,, the RP reduct of A. That is, if A =
(A, V,A, 4\, /,€), then A, = (4,+,\,/,€,<). For any semi-direct decompo-
sition A = X ®, Y, we obviously have A, = X, ®5 Y.

LEMMA 6.1. If A is an RL, then B is a normal, conver subalgebra of A.



Products of Classes of Residuated Structures 279

ProOOF. By Lemma 4.2(3), B,, is a convex substructure of A.,. Thus, all
we need to show is that the set B is closed under the lattice operations and
conjugation.

For any x,y € B, we have z,y < e, and hence zy <z Ay <zVy<Le.
Since zy and e are in B, it follows that Ay and x V y are in B. To prove
closure under conjugation, it suffices by symmetry to show that, for all x € B
and a € A, a\za € B, since B consists of elements below e. Representing a
as a product, @ = bc, with b € B and ¢ € C, we have a\za = c~1(b\zb)c.
The element b\zb is in B because both z and b are in B, and any inner
automorphism (by the invertible element ¢) is an automorphism of A, and
therefore sends the definable subset B into itself. ]

THEOREM 6.2. An RL A belongs to TRLx LG if and only if A satisfies
(P1) and (L1).

PRrROOF. Suppose
A € TRLxLLG. (6.1)

Then A = B®,C. Hence the sets B and C are closed under all the basic
operations in A. In particular,

C is closed under joins. (6.2)

Also, A,y € IRPx PG, so (P1) and (P2) hold in A,;, and therefore also in
A. Since (L1) is equivalent to the conjunction of (P2) and (6.2), we conclude
that (P1) and (L1) hold in A.

Now assume that A satisfies (P1) and (L1). To prove that (6.1) holds,
it suffices to show the following:

B and C are subuniverses of A. (6.3)
g is an endomorphism of A. (6.4)
g9(A) =C. (6.5)

g '(c) = Be, for all c € C. (6.6)

By Lemma 6.1, it is true for any RL A that B is a subuniverse of A
and by Lemma 4.2(4), C is always closed under the multiplication and the
residuals. In an RL that satisfies (P1) and (P2), a direct check shows that g
is a closure operation with C as its set of closed elements, and C' is therefore

closed under meets. Finally, the closure of C' under joins is guaranteed by
(L1). Thus (6.3) holds.
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By Lemma 6.1, B is a normal, convex subalgebra of A. The elements of
the quotient algebra A are the blocks Ba with a € A. From the fact that
A = BC it follows that each block is equal to Bc for some ¢ € C, and from
the fact that each element ¢ € A has a unique representation a = bc with
b € B and ¢ € C we see that each block contains a unique member of C.
Using the fact that C is a subalgebra of A, we conclude that (6.4), (6.5) and
(6.6) hold. n

7. A basis for TRL x LG

Our main result in this section states that adding (L.2) to an equational
basis for RL yields an equational basis for the product (join) of ZRL and
LG. This result generalizes an earlier result in [6], which presents a finite,
but more involved, equational basis for this variety.

LEMMA 7.1. An RL A belongs to TRL x LG if and only if A satisfies (L2)
and (P3).

ProOOF. The two identities hold in the varieties ZRL and LG, and hence
also in their direct product.

Now consider an RL that satisfies (L2) and (P3). We are going to apply
Proposition 2.3 with A’ = B x C. In order to make sure that this theorem
applies, we note that, by Theorems 6.2 and 5.5,

A = B®,C; and (7.1)

A, =B, ®Cyp. (7.2)

This is true because (L2) implies (P1), (L1) and (P4). Implicit in (7.1) is the
fact that the partial subalgebras B and C of A are actually subalgebras. By
(7.2), the map h(b,c) = bc is an isomorphism from B, xC,;, onto A,,, and
we infer, by Proposition 2.3, that A, : BX C=A i e, that A=B®C. =

Our next goal is to show that (P3) can be omitted. In other words, we
are going to prove that if (1.2) holds, then every member b of B commutes
with every member ¢ of C.

LEMMA 7.2. Suppose A is an RL that satisfies (L2). For any by,b1 € B and
co,c1 € C,

bocg V b1y = (b() \ bl)(CO V Cl),
bocg Abieg = (bo A bl)(CO A Cl).
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PROOF. We have previously remarked that (L2) implies (P1) and (L1). By
Theorem 6.2, A = BC. Let a = bc be an arbitrary element of A with b € B
and ¢ € C. By Lemma 5.1, we have for i = 0,1, b;c; < bciff b; < b and ¢; <
c. Hence, bgcg V bicp < beiff by Vb < band ¢y Vep < e. A similar argument
applies for meets. [

COROLLARY 7.3. Suppose A is an RL that satisfies (L2). For any b € B
andce€ C,bAc=blche)=(cAe)b.

PROOF. We have, by Lemma 7.2, b(cAe) = (bAe)(eAc) =beNec=bAc.
This proves the first equality, the second one follows by symmetry. [

LEMMA 7.4. Suppose A is an RL that satisfies (L2). For any b € B and
c € C, if ¢ is comparable with e, then bc = cb.

PRrROOF. For ¢ < e, both bc and cb are equal to b A ¢ by the preceding
corollary. If ¢ > e, then ¢! < e. In this case, ¢! commutes with b, and
hence so does c. [

LEMMA 7.5. Suppose A is an RL that satisfies (L2). For all a € A,
a={aVe)aAe).

PROOF. Using the fact that the element aVe is invertible, write the equation
in the equivalent form
(ave)la=aAe.

Invoking Corollary 7.3 and writing a in the usual form, a = bc, with b € B
and ¢ € C, we compute:

(avVe)la = ((bcVe)\e)bc = (bc\e A e)be
= (ctAebec=blctAe)e
= blenc)=(bAe)(cAe)
= bcAhee=aAle. ]

LEMMA 7.6. Every RL that satisfies (L2) also satisfies (P3).

PROOF. Suppose A is an RL that satisfies (L2), and consider any ¢ € C.
Then ¢ = (¢ V e)(c A e). The elements ¢V e and ¢ A e are both invertible,
since C is a subuniverse by Theorem 6.2, and they are both comparable with
e. Hence, by Lemma 7.4, they both commute with every member of B. It
follows that their product ¢ also commutes with every member of B. |
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THEOREM 7.7. An RL A belongs to ITRP x LG if and only if it satisfies
(L2).

PrOOF. By Lemmas 7.1 and 7.6. [ |

COROLLARY 7.8. Suppose U is a variety of RLs that satisfies (L2). Then
U=UNIRL) x UNLG).

PROOF. We have Y C TRL x LG. For any A € U, the subalgebras B and
C of A are in ZRL and LG, respectively. From the fact that A =B ® C it
follows that A € U if and only if B, C € U. Therefore,

AcUITBeUNIRL and CeUNLG.

8. An application

The notion of a generalized MV-algebra, introduced in [2] and [14], gen-
eralizes the classical notion of an MV-algebra in the context of residuated
lattices to include non-commutative, non-integral and unbounded structures.
The class of generalized MV-algebras includes ¢-groups, their negative cones,
generalized Boolean algebras and classical MV-algebras. It is shown in [7]
that generalized MV-algebras can be obtained from ¢-groups via a trunca-
tion construction that subsumes the Chang-Mundici I' functor. Moreover,
this correspondence extends to a categorical equivalence that generalizes the
ones established in [16] (see also [4]) and [5].

A significant ingredient of the aforementioned result is the observation
that the variety of generalized MV-algebras — in fact, the more general class
of generalized BL-algebras — is a subvariety of ZRL V LG. The aim of this
section is to provide a proof of this result based on the theory developed in
the preceding sections.

DEFINITION 8.1. By a generalized basic logic algebra, or a GBLA for short,
we mean an RL that satisfies the identities

z(z\(zAy)) =z Ay = ((zAy)/z)z. (8.1)

We denote by GBLA the variety of all GBLAs.
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We remark that the identities (8.1) are obviously equivalent to the quasi-
identities
x > y implies z(z\y) =y = (y/x)=z. (8.2)
Another equivalent identity, which will not be needed in the sequel, is
z(z\yne)=zANy=(y/zAe)x. (8.3)
(see [7] for details).
The quasi-identities (8.2) imply (just let y = e):
Every positive element of a GBLA is invertible. (8.4)
LeMMA 8.2. ([7]) Every GBLA satisfies the identity
z=(zxVe)(zAe). (8.5)

PRrOOF. Using the fact that x V e is invertible, we write the identity in the
equivalent form
(xVe)lz=zAre

We now compute,

(xve)ylr=(e/(xVe)z=(e/xAe)x=xAe.

We are ready to prove the main result of this section.

THEOREM 8.3. ([7]) LetU be the variety of all IRLs that satisfy the identities

z(x\y) =z Ay = (y/r)z. (8.6)
Then GBLA =U x LG.

PRroOF. It will suffice to prove that every GBLA satisfies (L2). Indeed, this
will imply, by Corollary 7.8, that

GBLA = (GBLANTIRL) x (GBRL N LG).

The proof is completed by noting that every LG is a GBLA, while an IRL
is a GBLA if and only if it satisfies the identity (8.6).

Consider a GBLA A. We proceed to show that A satisfies (L2). We have
noted that every positive element of A is invertible. We first show that, for
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every x € A, the elements z\e and e/x are invertible. By symmetry, we only
need consider z\e. We have, by (8.5),

z\e = (z\e Ve)(z\e Ae).

The first factor is positive, and therefore invertible. The second factor,
z\e Ae = (z V e)\e, is the inverse of the invertible element x V ¢, and is
therefore also invertible. Hence z\e is invertible. Lastly, consider the join
z=1x\eVy,for z,y € A. By (8.2), 2(2\(z\e)) = z\e. Thus, z(zz\e) = z\e,
showing that z is invertible, since both zz\e and z\e are invertible. This
establishes (L2) and completes the proof of the theorem. [ |

DEFINITION 8.4. By a generalized MV-algebra, or a GMVA for short, we
mean an RL that satisfies the identities

z/((zVy\z) =z Vy=(z/(zVy)\z (8.7)
We denote by GMVA the variety of all GMVAs.

The identities 8.7 are equivalent to the following quasi-identities:

z <y implies z/(y\z) = y = (z/y)\z. (8.8)

The identities (8.7) easily imply that an IRL is a GMVA if and only if it
satisfies the identities

z/(y\e) =z Vy = (z/y)\z. (8.9)

It is shown in [7] that GMVA is a subvariety of GBLA. Thus, the pre-
ceding result implies the final result of this section.

COROLLARY 8.5. ([7]) Let U be the variety of all IRLs that satisfy the iden-
tities (8.9). Then GMVA =U x LG.

9. Constructing semi-direct products

We established in Theorem 4.5 that an RP belongs to ZRP x ;PG if and only
if it satisfies axioms (P1) and (P2). Unlike a direct product, a semi-direct
product is not uniquely determined by its factors, as it depends on how these
factors interact with each other. Thus, it is important to have a general
method for constructing such products. The main result of this section,
Theorem 9.4, presents necessary and sufficient conditions for constructing a
semi-direct product of an IRP by a PG.
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We start with a review of the simple case of monoids. Let A be a
semi-direct product of a monoid B by a group C. Then, by Definition 1.2,
there exists a homomorphism g : A — C with g~'(¢) = Bc = ¢B, for all
¢ € C. In light of Lemma 4.2, every element a € A has a unique “standard
representation” as a product @ = bc, with b € B and ¢ € C. The same result
also tells us that the submonoid B is closed under inner automorphisms
by elements of C. Hence the only information we need to reconstruct the
multiplication table of A from the two factors is the action of C on B, as
reflected by such automorphisms. Indeed, observe that if ag = bgcg and
a1 = bic; are elements in standard form, then the standard form for the

-1 -1
product aga; is aga; = bgb1 cpcy, with boby € B and coc; € C.
The following result is almost immediate.

LEMMA 9.1. Given a monoid B and a group C with BN C = {e}, together
with a homomorphism ~ : C —Aut(B), there exists, up to isomorphism, a
unique semi-direct product A of B by C such that b = Ye(b), for allc € C
and b € B. (Throughout the paper, ~. will denote the value of vy at c € C.)

DeFINITION 9.2. If A, B, C and v are as in the preceding lemma; then we
say that A is the semi-direct product of B by C induced by v, and we write
A=Bx,C.

Given an IRP B and a PG C, we can apply the preceding lemma, to the
monoid reducts By, = (B, -,¢) and C,, = (C, -, e). For each homomorphism
v : Cp — Aut(B,,), this yields a monoid A,, = By, Xy Cp. However,
in general A,, cannot be expanded to a partially ordered monoid, because
the monoid automorphisms v, need not be isotone. We therefore restrict
the choice of these automorphisms by requiring that v : C,,— Aut(B) be a
homomorphism. That is, we stipulate that each 7, be an automorphism of
the RP B, not just of the monoid B,,.

We wish to construct partial orders < of A that agree with the given
partial orders on B and C, and with respect to which multiplication on A is
residuated. We further require that the residuals on A agree with those on
B and C. Thus for by, by € B and ¢y, ¢; € C, we stipulate that

boCo < b101 iff C()Cl_l S b()\bl.

The preceding equivalence shows that the partial orders can be completely
defined by specifying, for each ¢ € C, the set F(c) of elements of B that are
above c. To facilitate the discussion, we define a relation <y for an arbitrary
map F : C — P(B), and then list the conditions that F' must satisfy in
order for <p to have the required properties.
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DEFINITION 9.3. Suppose B is an IRP and C is a PG. Let v : C,,, — Aut(B)
be a homomorphism and let Ay, = By, Xy Cyy. For any map F : C — P(B),
and for all bg, by € B, ¢y, c; € C, we define

boco <p bycy iff bo\b1 € F(Cocl_l). (91)

If <p is a partial order and the multiplication in A,, is residuated relative
to <p, then we say that F is admissible for B, C and -, and denote by
B x4, C the induced RP.

Every semi-direct product of an IRP B by a PG C is obtained in this
manner. The following result characterizes all admissible maps F'.

THEOREM 9.4. Suppose B is an IRP, C a PG and v : C,, — Aut(B) a
homomorphism. Let Ay, = By %, Cr,. A map F : C — P(B) is admissible if
and only if the following conditions hold for all b,bg, b1 € B and ¢, co,c1 € C.

(i) If c £ e, then F(c) = 0.

(ii) If ¢ < e then F(c) is an order filter in B.

(iii) F(e) = {e}.

(iv) If co < ¢1, then F(co) D F(c1).

(V) F(C())F(Cl) g F(Cocl).

(vi) Fleit) = Fleo)®.

(vii) bo\b1 € F(c) iff b1/b§ € F(c).
PROOF. Suppose F' is admissible. Then <pg is a partial order that agrees
with the partial orders on B and C. For ¢ € C, F(c) is the set of all elements
of B that are above ¢, and using the fact that e is the top element of B,
we infer that (i)-(iv) hold. Also, the multiplication must be isotone relative

to <, from which it follows that (v) holds. The proofs of (vi) and (vii) are
straightforward. For example, the following calculation establishes (vii):

bo\b1 S F(C) iff ¢< bo\bl iff bge < by iff Cboc <Bhiff ¢< bl/bg
Conversely, suppose (i)-(vii) hold. For by, b; € B we have

bo <p by iff boe <p be iff b()\bl € F(e) it b()\bl =eiffl by < b1,
while for ¢y, ¢y € C,

co <pc iff ecy <pecy iff e\e€ F(cocfl) iff cocl—1 <eiff ¢ <.
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The relation <p therefore agrees with the partial orderings of B and C. We
henceforth drop the subscript F, writing < for <p .

We next prove that < is a partial order.

Reflexivity: Note that boco < boco if and only if bo\by € F'(cocy 1) =
F(e) = {e}, that is, if and only if by\bp = e. Since the latter equality is
always true for integral elements, we have that < is reflexive.

Antisymmetry: If boco < brer < bpcy, then bp\b € F(cocl_l) and by\by €
F(cicgt), hence (bo\b1)(b1\bo) € F(coc;)F(cicg') € F(e) = {e}. Thus
(bo\b1)(b1\bo) = e, which implies that by\by = e = b1\bg, hence by = b;.
Therefore, < is antisymmetric.

Transitivity:  If bocg < bici < baca, then bo\b; € F(c()cl_l) and
bl\bg € F(ClcQ_I) so that (bo\bl)(bl\bg) € F(Cocl_l)F(CICQ_I) - F(CoCQ_I).
Using the fact that (bo\b1)(b1\b2) < bo\ba, we infer that bo\bs € F(cocg_l),
and hence bgcy < bscy. Therefore, < is transitive.

We next prove that A is a po-monoid. To show that an inequality z < y
is preserved when both sides are multiplied by the same element z, either on
the left or on the right, it suffices to consider the cases when the multiplier
is either a member of B or a member of C. We establish isotonicity for
multiplication by elements of B and leave to the reader the simpler cases
when the multiplier is a member of C. In the case of left multiplication by an
element z = b € B, we represent z and y in the standard form, x = bgcg and
y = bicy. Then zz = (bbg)co and zy = (bb1)cy. Given that bo\b; € F(cocl_l),
we therefore need to show that (bbg)\(bby) € F(coci'). But this follows
from the inequality bo\b1 < (bbo)\(bb1), which holds in every RP. For right
multiplication by an element w of B, we proceed similarly, using the dual
representations © = cpbp and y = c¢1b1, and using in place of (9.1) the
equivalence

cobg < c1by iff bl/bo € F(CI_ICO). (92)

Thus we can complete the proof of this case by verifying (9.2). To this end,
first observe that for all by,b; € B and all c € C,

(b1/bo)® = b7/bG- (9-3)

This simply reflects the facts that «.(b) = b°, for all b € B and all ¢ € C,
and that each . is an automorphism of the RP B. We use (9.3) to verify
(9.2):

-1 -1 -1 -1
cobo < e1by iff bgo co < bil cy iff bgo \bil S F(CoCl_l) {by (91)} iff
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c;l cal coe L —1 . . 01_1 cl_1 1\ s

bt /(b ) € F(coe; ) {by (vii)} iff b;* /byt € F(coey ™) iff
-1 -1

(b7 /byt ) € Fcocy M)t iff b1/bo € F(cy o) {by (9.3) and (vi)}.

Lastly, we need to establish that A is an RP. Given ag, a1 € A, we show
that the inequality apxz < a; has a largest solution x. With ag,a; and z
in standard form — ap = bgcg, a1 = bicy and x = yz — the i{lequality is
equivalent to bocoyz < bicy, which in turn is equivalent to boy% coz < bicy.
Hence agx < a; holds if and only if

—1
boy®e \by € F(coze ). (9.4)

For any solution = yz of (9.4), we have cozcl_1 < e, hence z < cglcl. We
get one solution xo = yozo by taking zg = ¢ Loy and yo = (bo\b1). This is
in fact easily seen to be a maximal solution, so our problem now reduces to
showing that, every other solution satisfies the inequality z < x(. Assuming
9.4, we therefore need to show that yz < (bo\b1)%cy *c; or equivalently,

y\(bo\b1)® € F(zcl_lco). (9.5)

To see that (9.4) implies (9.5), we observe that

—1
y\(bo\b1)® = (boy® \b1)*®, by (9.3),
zey teo = (cozer M),

and invoke (vi). Thus the left residuals exist. The existence of right residuals
follows similarly from (9.2) and the mirror equation of (9.3). |

We will use the preceding result in the construction of the wreath product
in the next section.

10. Wreath products

The purpose of this section is to introduce the important concept of a wreath
product, a special type of a semi-direct product of an IRP by a PG. As an
application, we will use this construction to exhibit examples of RLs in
IRL x4 LG that are not members of IRL x LG.

The concept of a wreath product of two £-groups, with the second factor
a totally ordered group, was introduced in [17]. Our concept of a wreath
product is a variant of the more general concept of a wreath product of
two £-groups first considered in [15] and generalized for an arbitrary family
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of {-groups in [13]. A detailed account of this important construction is
presented in [8] and [9].

The second factor, C, of a wreath product D Wr C is a PG of auto-
morphisms of a poset X = (X, <). We remark that multiplication in C is
composition of functions and the partial order is defined point-wise: o < 7
if and only if o(z) < 7(z), for all z € X. The first factor B is taken to be the
X-th power DX of an IRP D. The universe of the wreath product D Wr C
is the cartesian product B x C. Its multiplicative reduct is the semidirect
product B ®, C induced by the homomorphism v : C — Aut(B) defined by
Yo(f) = foo~!, for all o € C and f € D¥. Let é € B denote the constant
map with image {e}, and let 1 denote the identity map on X. In what fol-
lows, we will identify B and C with their isomorphic copies B’ = B x {1}
and C’ = {é} x C, respectively.

The partial ordering on the wreath product will be defined in terms
of a map F introduced in the previous section. For (é,0) € C’, we let
F(é,o0) = 0 if (é,0) £ (é,1), that is, if ¢ £ 1. If (é,0) < (€,1), we let
F(é, o) ={(f,1):Vz € X, o(x) =z = f(z) =e}.

THEOREM 10.1. If D is an IRP and C is a PG, then D Wr C is an RP.

Proor. We will prove that the map F is admissible for B’, C’ and ~, by
verifying conditions (i)-(vii) in Theorem 9.4.

(i) By definition, F(é,0) =0 if (é,0) £ (&,1).

(ii) Suppose (f,1) € F(é,0) and (f,1) < (g,1). For every fixed point x
of o we then have f(z) = e, and hence g(z) = e, so (g,1) € F(é,0).

(iii) Every member of X is a fixed point of 1, whence (&, 1) is the only
member of F'(é,1).

(iv) Let (é,0) < (é,7). We may assume that (é,7) < (é,1). Then o(x) <
7(x) < z for every x € X. From this it follows that every fixed point of & is
also a fixed point of 7, whence the inclusion F(é,0) 2 F(é, ) follows.

(v) Assuming that (f,1) € F(éo0)F(é, 1), we have that (f,1) =
(9,1)(h,1) = (gh,1), with (g,1) € F(é,0) and (h,1) € F(& 7). We need
to show that (f,1) € F((é,0)(é,7)) = F(é,0 o). We claim that every
fixed point x of ¢ o 7 is a fixed point of both ¢ and 7. Indeed, since the
sets F'(é,0) and F(é,T) are non-empty, o and 7 are both below 1. Hence,
z=oco7(z)=o0(r(z)) < 7(z) < x, from which it follows that 7(z) = z and
o(x) = o(r(z)) = z. From this claim it follows that if z is a fixed point of
oo, then g(z) = e and h(z) = e, and hence f(z) = g(z)h(z) =e.
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(vi) Consider elements (f, 1) € B’ and (é,0), (é,7) € C'. We need to show
that F((é,0)®™) = F(é,0)®7). We begin by noting that multiplication in
D Wr C is given by (f1,01)(f2,02) = (fi - (fao o7 1),01 0 02). Next observe
that (&,0)&™ = (8,7 looo7) and (f,1)&™) = (for,1). It follows readily
from the last two formulas that

(a) (f,1) € F((&,0) &) iff Vz€ X, 77 oo or(z) =z = f(x) =e; and
(b) (f,1) € F(&,0)&N iff Ve € X, o(z) =2z = for  (z) =e.

Suppose now that (f,1) € F((¢,0)®7) and let o(x) = z, for some
r € X. Then 71 oo o7r(r71(z)) = 771(z), and hence f(r1(z)) = e, that
is, f o7 Y(z) = e. This shows that (f,1) € F(é,0)®7). Conversely, suppose
(f,1) € F(é,0)®7), and let 771 0 5 o 7(z) = z. Then o(r(z)) = 7(z) and
hence f o 7-1(r(x)) = e, that is, f(x) = e. Thus, (f,1) € F((é,0)&7).

(vii) Let (f,1),(g9,1) € B’ and (é,0) € C'. We need to show that
(f,D\(g,1) € F(&,0) iff (g,1)/(f,1)?) € F(&,0). In light of the for-
mula (f,1)7) = (f o 7,1), this is equivalent to showing that (f\g,1) €
F(é,o) iff (g/(foo0),1)€ F(¢é o). But this is immediate, since we have at
each fix point z of o, (f\g)(z) =e iff f(x)\g(z) =€ iff f(z) <g(x) iff
(foo)(x) <g(z) iff g(z)/(foo)(z)=e iff (9/fc0)(z)=e. u

We note, for future reference, that the partial order of D Wr C induced
by F' can be described as follows:

(fyo) < (g,7) iff

oc<tand (Vze X))o z)=7"(2) = f(z) < g(z)] (10.1)

We are particularly interested in determining when a wreath product
D Wr C is an RL. The following result shows that if C is an ¢-group of
automorphisms of a chain — by Holland’s embedding theorem [12], any ¢-
group is isomorphic to such an ¢-group — and D is an IRL, then D Wr C is
an RL.

THEOREM 10.2. Let C be an £-group of automorphisms of a chain X and
let D be an IRL. Then A =D Wr C is an RL.

PRrROOF. We only need to show that the partial order (10.1) is a lattice order.
To this end, let (f, o) and (g, 7) be two elements of the wreath product. It is
easy to verify that (f,0)V(g,7) = (hv,o V1) and (f,0)A(g,7) = (ha,0AT)
where, for all z € X,
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f(z) if o7Nz)<77Ha)
hy(z) = §I(~’U) if 7)< U_I(wg

and

fl@)  if o7l w)> 7 H(a)
ha(z) = g(x) if T
f@)Ag(z) if o Hz)=71""(a).

The preceding two theorems immediately imply the last result of this

paper.

COROLLARY 10.3. ZRP x PG is a proper subclass of IRP xs PG and
IRL x LG is a proper subvariety of TRL X4 LG.
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