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A Concrete Realization of
the Hoare Powerdomain

Abstract. The lattice of non-empty Scott-closed subsets of a domain D is called the

Hoare powerdomain of D. The Hoare powerdomain is used in programming semantics as

a model for angelic nondeterminism. In this paper, we show that the Hoare powerdomain

of any domain can be realized as the lattice of full subinformation systems of the domain’s

corresponding information system as well as the lattice of non-empty down-sets of the

system’s consistency predicate.

1. Introduction

In the late 1960’s, Dana Scott introduced continuous lattices (see, Scott
[13, 14, 15, 22]) into computer science as a means of providing mathematical
models for a system of types that justify recursive definitions of these types.
In time, the order theoretic models Scott and others considered evolved into
what we now call domains (see Section 2).

The level of abstraction required to understand domain theory remained
an obstacle to its widespread use. To remedy this problem, Scott imported
from logic the notion of an information system to provide a set-theoretic
approach to domains (see Scott [17]). In this setting, every information
system gives rise to a domain in a canonical way (see Section 2 for details).

The Hoare powerdomain is an order-theoretic analog of the power set and
is used in programming semantics as a model for angelic nondeterminism
(see, for example, Plotkin [11]). The main result of this paper, Theorem
3.8, asserts that the Hoare powerdomain of any domain can be realized
as the lattice of non-empty down-sets of the consistency predicate for the
domain’s corresponding information system. A corollary result – Corollary
4.8 – asserts that the Hoare powerdomain can be realized as the lattice of full
subinformation systems of the domain’s corresponding information system.
These results provide concrete representations of the Hoare powerdomain by
means of the corresponding information system.

2. Domains and Information Systems

Speaking loosely, a domain for a programming language is the underlying
set of data objects for an admissible type equipped with an information-
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based partial ordering. Over the years, a number of poset structures have
been introduced to accommodate the needs of information theorists; and,
at various times, all have come under the “domain” label (see for example
Abramsky and Jung [1], Gunter [5], [6], [7], or Jung [9]). Today, the general
consensus is that domains constitute some subcategory of algebraic posets
with directed join homomorphisms (Scott-continuous maps) and particularly
those subcategories which are cartesian closed (see Smyth [19] or Jung [8]).
Our use of the term “domain” follows that of Davey and Priestley [2]; we
pause briefly to explain.

A subset D of a poset P is directed if every finite subset of D has an
upper bound in D. (Note that the empty subset of P is not directed.) A
poset P is said to be directed-complete, or a DCPO for short, if the join of
every directed subset of P exists in P . A subset I of poset (P,≤) is a down-
set of P provided I = ↓I = {p ∈ P : ∃ a ∈ I, p ≤ a}. A down-set of a DCPO
P is Scott-closed if it contains the join of each of its directed subsets. An
element x of a DCPO P is compact if, whenever x is below the supremum
of a directed set D ⊆ P , then x ∈ ↓D. We use K(P ) to denote the subposet
of compact elements of P . A DCPO P is algebraic if, for all p ∈ P , the set
K(p) = ↓p∩K(P ) is directed and p =

∨
K(p). In this paper, we will use the

term “domain” for an algebraic poset in which the meet of every non-empty
subset exists. Equivalently, it is an algebraic poset in which the join of every
upper bounded subset exists. Note that a domain has a least element.

We will let Γ(P ) denote the set of all Scott-closed subsets of a DCPO P ,
ordered by set-inclusion. It is easy to see that Γ(P ) is closed with respect
to finite set-unions and arbitrary set-intersections; hence Γ(P ) is the family
of closed sets for a topology on P , called the Scott topology on P . The
lattice Γ∗(D) of non-empty Scott-closed subsets of a domain D is called the
Hoare powerdomain of D. The interested reader may wish to know that
the Hoare powerdomain was originally described by Plotkin [12] as the ideal
completion of the family of finite, non-empty sets of compact elements of
the parent domain under the preorder

X v Y ⇐⇒ (∀x ∈ X)(∃y ∈ Y )(y ≤ x)

The description of the Hoare powerdomain in terms of Scott-closed sets is
due to Smyth [12].

We next turn our attention to information systems. Viewed from a lo-
gician’s perspective, an information system for an object or a process is a
triple (S, Con,`), where S is a collection of propositions (or instructions)
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concerning the object or process, Con is a collection of finite subsets of S,
which are somehow “consistent” with one another, and ` is a relation of in-
terdependence between members of Con. The members of S are thought of
as providing simple bits of information about the object or process and are
therefore called tokens. The set Con is called the consistency predicate, and
` is known as a relation of entailment. An information system is assumed to
obey certain common sense properties normally associated with the notions
of consistency and entailment. These properties are made mathematically
precise in the following definition. (In this definition and all the work that
follows, we let Fin(S) denote the set of all finite subsets of a set S.)

Definition 2.1. An information system is a triple S = (S, Con,`) consisting
of

(1) a set S whose elements are called propositions or tokens;

(2) a non-empty subset Con of Fin(S), called the consistency predicate; and

(3) a binary relation ` on Con, called the entailment relation.

These entities satisfy the following axioms:

IS1 Con is a down-set of Fin(S) – with respect to set-inclusion – such that⋃
Con = S;

IS2 if A ∈ Con and B ⊆ A, then A ` B;

IS3 if A,B, C ∈ Con, A ` B, and B ` C, then A ` C; and

IS4 if A,B, C ∈ Con, A ` B, and A ` C, then B ∪ C ∈ Con and
A ` (B ∪ C).

Note that axiom IS1 implies that every singleton subset of S is a member
of Con and that whenever A ∈ Con and B ⊆ A, then B ∈ Con. Furthermore,
axioms IS2 and IS3 imply that (Con,`) is a preordered set, that is, ` is a
reflexive and transitive relation on Con.

We advise the reader that our definition of an information system is
stated differently from the one commonly appearing in the literature (Scott
[17] or Davey and Priestly [2]; see, however, Droste and Göbel [3]). In par-
ticular, the first two references define the entailment relation as a relation on
the set Con × S. A comparison quickly shows our definition to be equiva-
lent; it has the advantage of allowing us to think of (Con;`) as a preordered
set.
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We close this section by describing the aforementioned correspondence
between domains and information systems. Let S = (S, Con,`) be an in-
formation system. A subset X of (Con,`) is a down-set of Con provided
X = ↓X = {F ∈ Con : ∃ G ∈ X, G ` F}. A subset A of S is called an ele-
ment of S provided Fin(A) is a down-set of (Con,`). We let El(S) denote
the set of “elements” of S, ordered by set-inclusion. Routine application
of the information system axioms shows the union of any directed subset
of El(S) is a member of El(S). Thus, El(S) is a DCPO with respect to
set-union. The set ∅̄ = {s ∈ S : ∅ ` {s}} is the least element of El(S); con-
sequently, it is also routine to prove that El(S) is closed under non-empty
intersections. We next claim that El(S) is an algebraic poset. Indeed, for
each F ∈ Con, F̄ =

⋃
↓F = {s ∈ S : F ` {s}} is the smallest mem-

ber of El(S) containing F , as well as a compact member of El(S). Thus,
K(El(S)) = {F̄ : F ∈ Con} is the subposet of compact elements of El(S).
Further, for each A ∈ El(S), K(El(S))∩ ↓A = {F̄ : F ∈ Fin(A)} is directed
and A =

⋃
{F̄ : F ∈ Fin(A)}. We have established that El(S) is a domain.

3. A Novel Representation of the Hoare Powerdomain

In this section, we establish the main result of this paper, Theorem 3.8,
which states that if S is an information system, then the Hoare powerdomain
of the domain associated with S is isomorphic to the lattice of non-empty
down-sets of the consistency predicate of S.

Let S = (S, Con,`) be an information system. By definition, the empty
set ∅ ∈ Con; consequently, the intersection of any family of non-empty down-
sets of (Con,`) will always exceed ↓∅ and therefore is never empty. The
simple proof of the next result is left to the reader.

Lemma 3.1. Let S = (S, Con,`) be an information system.

(1) For all F,G ∈ Con, F̄ ⊆ Ḡ if and only if G ` F . In particular, F̄ = Ḡ
if and only if G ` F and F ` G.

(2) X ⊆ Con is directed in (Con,`) if and only if X̃ = {F̄ : F ∈ X} is
directed in El(S).

It will be helpful to clarify what we mean by a “directed subset” in the
statement of the preceding lemma: X ⊆ Con is directed in (Con,`) provided
every finite subset Y of X has an upper bound in X with respect to `; that
is, there exists F ∈ X such that F ` G, for all G ∈ Y . Note that ∅ is not a
directed subset of Con.
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Definition 3.2. Let S = (S,Con,`) be an information system. For non-
empty X ⊆ Con, let DX denote the family of all directed subsets of X in
(Con,`), and let σ(X) = {

⋃
{F̄ : F ∈ Y } : Y ∈ DX}.

Lemma 3.3. Let S = (S,Con,`) be an information system and let X ⊆ Con.

(1) If X ∈ Con, then σ({X}) = {X̄}.

(2) σ(X) is a subset of El(S).

(3) If X is a down-set of (Con,`) and F ∈ Con, then F ∈ X if and only if
F̄ ∈ σ(X).

Proof. (1) This implication is immediate.

(2) Let A ∈ σ(X). In light of Definition 3.2, there exists a directed YA ⊆ X
such that A =

⋃
{F̄ : F ∈ YA}. By Lemma 3.1(2), {F̄ : F ∈ YA} is directed

in El(S). Hence, A is a member of El(S), since the latter is a DCPO.

(3) Let X be a down-set of (Con,`) and let F ∈ Con. Definition 3.2 implies
at once that F̄ ∈ σ(X) whenever F ∈ X. Conversely, suppose that F̄ ∈
σ(X). By Definition 3.2, there exists a directed subset YF̄ of X such that
F̄ =

⋃
{Ḡ : G ∈ YF̄ }. Using the compactness of F̄ in El(S), along with the

fact that {Ḡ : G ∈ YF } is directed in El(S) by Lemma 3.1(2), we obtain that
F̄ = Ḡ, for some G ∈ YF . Invoking Lemma 3.1(1), we obtain successively
G ` F and F ∈ X, since X is a down-set of Con.

Lemma 3.4. Let S be an information system. If X is a non-empty down-set
of Con, then σ(X) is a non-empty Scott-closed subset of El(S).

Proof. Let X be a non-empty down-set of Con. It is clear that σ(X) is
non-empty. We first prove that σ(X) is a down-set of El(S). Suppose that
A ∈ σ(X), B ∈ El(S), and B ⊆ A. We know that A =

⋃
{F̄ : F ∈ YA}, for

some directed subset YA of X. We also have that B =
⋃
{Ḡ : G ∈ Fin(B)}.

Since Fin(B) is clearly directed in (Con,`), {Ḡ : G ∈ Fin(B)} is directed
in El(S) by Lemma 3.1(2). Thus, to prove that B ∈ σ(X), it will suffice
to prove that Ḡ ∈ σ(X) for each G ∈ Fin(B). Let Ḡ be such a compact
element. The representation of A implies that Ḡ ⊆ F̄ , for some F ∈ YA.
Hence F ` G, by Lemma 3.1(1). Hence, we know G ∈ X since X is a
down-set of (Con,`). We have shown that σ(X) is a down-set of X.

Next, suppose that D is a directed subset of σ(X). We need to prove that⋃
D ∈ σ(X). As above, it will suffice to prove that each compact element of

El(S) below
⋃

D belongs to σ(X). To this end, let Ḡ be such an element,
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for G ∈ Con. The inclusion Ḡ ⊆
⋃

D and the compactness of Ḡ imply that
Ḡ ⊆ A, for some A ∈ D. But then, Ḡ ∈ σ(X), since σ(X) is a down-set of
El(S).

Definition 3.5. Let S = (S, Con,`) be an information system and suppose
that X is a subset of El(S). Let δ(X) be defined by

F ∈ δ(X) ⇐⇒ F ∈ Con and F̄ ∈ X.

Lemma 3.6. If S = (S, Con,`) is an information system and X is a non-
empty down-set of Con, then X = δ(σ(X)).

Proof. Let X is a non-empty down-set of Con and let F ∈ Con. In view
of Definition 3.5, F ∈ δ(σ(X)) ⇐⇒ F ∈ Con and F̄ ∈ σ(X). The second
condition is equivalent to F ∈ X by Lemma 3.3(3). This establishes the
required equality.

Lemma 3.7. If S is an information system and X is a non-empty down-set
of El(S), then δ(X) is a non-emty down-set of Con, and X ⊆ σ(δ(X)).
Furthermore, if X is Scott-closed, then σ(δ(X)) = X.

Proof. Let S be an information system and let X be a non-empty down-set
of El(S). To see that δ(X) is a down-set of (Con;`), suppose A ∈ δ(X),
B ∈ Con, and A ` B. Axioms IS2 and IS4 imply that B ⊆ Ā. Since Ā ∈ X
and since X is a down-set of El(S), it follows that B̄ ∈ X. Hence, B ∈ δ(X).

Next, let F ∈ Con. We claim that

F̄ ∈ X ⇐⇒ F ∈ δ(X) ⇐⇒ F̄ ∈ σ(δ(X)) (1)

Indeed, the first equivalence is the definition of δ (see Definition 3.5), while
the second equivalence follows from Lemma 3.3 since, as we just proved,
δ(X) is a down-set of Con.

An important consequence of (1) is that the compact elements of X and
σ(δ(X)) coincide. Note further that Lemma 3.4 implies that σ(δ(X)) is a
Scott-closed subset of El(S). These two facts, together with the standard
representation, A =

⋃
{F̄ : F ∈ Fin(A)}, of an element A ∈ X, immediately

imply that X ⊆ σ(δ(X)). Lastly, if X is Scott-closed, the same argument
establishes the reverse inclusion.

Let ∆∗(Con) be the lattice of non-empty down-sets of (Con,`). Recall
that for any domain D, Γ∗(D) denotes the Hoare powerdomain of D. The
main result of this paper is an immediate consequence of the last two lemmas.
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Theorem 3.8. Let S be an information system and let El(S) be the domain
of elements of S. Then ∆∗(Con) is order isomorphic to Γ∗(El(S)).

Proof. The assignments σ : ∆∗(Con) −→ Γ∗(El(S)) and δ : Γ∗(El(S)) −→
∆∗(Con) defined above are mutually inverse by Lemmas 3.6 and 3.7. They
are clearly isotone and therefore constitute an order isomorphism.

We remark that arbitrary meets and joins in ∆∗(Con) are simply set-
intersection and union. Thus, the preceding representation immediately
yields the well-known result – see, for example, Abramsky and Jung [1],
Vickers[20], or Gierz et al. [4] – that the Hoare powerdomain of a domain
is a bialgebraic (algebraic and dually algebraic) distributive lattice. The
completely join-prime members of ∆∗(Con) are those of the form ↓F =
{G ∈ Con : F ` G}, for F ∈ Con. (Recall that an element j of a com-
plete lattice L is completely join-prime if, whenever j is below the join of an
arbitrary F ⊆ L, then j ∈ F .)

4. Full Subinformation Systems

In this section, we consider substructures of an information system and de-
rive a corollary result to Theorem 3.8. This result provides a concrete rep-
resentation of the Hoare powerdomain as a substructure lattice of its parent
information system. We begin by introducing these structures.

Definition 4.1. Let T = (T,ConT ,`T ) and S = (S, Con,`) be information
systems. T is a subinformation system of S provided T is an information
system in its own right and T ⊆ S, ConT ⊆ Con, and `T⊆`.

It is easy to see that the binary relation v, defined by T v S if and only
if T is a subinformation system of S, provides a partial order on the set of
all subinformation systems of S. We will let Sub(S) denote the set of all
subinformation systems of S, partially ordered under v.

Definition 4.2. Let T = (T,ConT ,`T ) be a subinformation system of
S = (S, Con,`). We say that T is a full subinformation system of S provided

(1) ConT is a lower-set of Con (with respect to entailment); and

(2) for all A,B ∈ ConT , A `T B ⇐⇒ A ` B.

It is routine to prove that if T = (T ,ConT ,`T ) and U = (U ,ConU ,`U )
are full subinformation systems of S = (S,Con,`), then T is a full subin-
formation system of U if and only if ConT ⊆ ConU . We will use FSub(S) to
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denote the subposet of Sub(S) consisting of all full subinformation systems
of an information system S. We note that the triple (∅; {∅}; (∅, ∅)) is an in-
formation system and a subinformation system of every information system.
We will refer to it as the empty information system.

Definition 4.3. Let S = (S,Con,`) be an information system. For non-
empty X ⊆ Con, let FSub(X) = (

⋃
X, X,`X), where `X denotes the re-

striction of ` to X.

Lemma 4.4. If S = (S,Con,`) is an information system and X a non-empty
down-set of (Con,`), then FSub(X) is a full subinformation system of S.

Given any information system S, we observe that FSub( ↓∅) is the least
member of FSub(S), and that FSub( ↓∅) is the empty information system if
and only if ↓∅ = {∅}.

The preceding result shows that each non-empty down-set X of (Con,`)
gives rise to a full-subinformation system of S. On the other hand, if T is a
full subinformation system of S, then

Down(T ) = ConT

is a down-set of (Con,`).

The straightforward proofs of the next two results are left to the reader.

Lemma 4.5. Let S be an information system and let X be a non-empty
down-set of Con. Then Down(FSub(X)) = X.

Lemma 4.6. Let T be a full subinformation system of an information system
S. Then FSub(Down(T )) = T .

In light of Lemmas 4.5 and 4.6, we have the following results.

Theorem 4.7. For any information system S, the lattice ∆∗(Con) is order
isomorphic to FSub(S).

Corollary 4.8. For any information system S, the Hoare powerdomain
Γ∗(El(S)) is order isomorphic to FSub(S).

Among other things, Theorem 4.7 and Corollary 4.8 tell us much about
the structure of FSub(S). In particular, it is a bialgebraic distributive lattice
whose completely join-prime members are precisely the substructures

FSub( ↓A) = (
⋃

↓A, ↓A,` ↓A),
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where A ∈ Con, A 6= ∅.
If we recall that meets and joins in ∆∗(Con) are simply set intersec-

tion and union, then we can also describe meets and joins in FSub(S) quite
easily. Indeed, let S = (S, Con,`) be an information system and let F =
{Ti : i ∈ I} be any family of full subinformation systems of S, where each
Ti = (Ti,Coni,`i). Then

∧
F is given by

∧
F = S if F = ∅ and

∧
F = FSub(Down(

⋂
{Coni : i ∈ I}))

= (
⋂
{Ti : i ∈ I},

⋂
{Coni : i ∈ I},

⋂
{`i: i ∈ I})

if F 6= ∅. Likewise,
∨
F is given by

∨
F = FSub( ↓∅) if F = ∅ and

∨
F = FSub(Down(

⋃
{Coni : i ∈ I}))

= (
⋃
{Ti : i ∈ I},

⋃
{Coni : i ∈ I},

⋃
{`i: i ∈ I})

if F 6= ∅.
We point out that the simple description of joins in FSub(S) fails in the

complete lattice Sub(S).
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