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Abstract

We generalize the notion of an MV-algebra in the context of residuated lattices to
include non-commutative and unbounded structures. We investigate a number of
their properties and prove that they can be obtained from lattice-ordered groups
via a truncation construction that generalizes the Chang-Mundici Γ functor. This
correspondence extends to a categorical equivalence that generalizes the ones es-
tablished by D. Mundici and A. Dvurečenskij. The decidability of the equational
theory of the variety of generalized MV-algebras follows from our analysis.
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1 Introduction

A residuated lattice is an algebra L = 〈L,∧,∨, ·, \, /, e〉 such that 〈L,∧,∨〉 is
a lattice; 〈L, ·, e〉 is a monoid; and for all x, y, z ∈ L,

x · y ≤ z ⇔ x ≤ z/y ⇔ y ≤ x\z.
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Residuated lattices form a finitely based equational class of algebras (see, for
example, [4]), denoted by RL.

It is important to remark that the elimination of the requirement that a residu-
ated lattice have a bottom element has led to the development of a surprisingly
rich theory that includes the study of various important varieties of cancella-
tive residuated lattices, such as the variety of lattice-ordered groups. See, for
example, [18], [4], [2], [20], [9], [12], [13], [14].

A lattice-ordered group (`-group) is an algebra G = 〈G,∧,∨, ·, −1, e〉 such
that 〈G,∧,∨〉 is a lattice, 〈G, ·, −1, e〉 is a group, and multiplication is order
preserving (or, equivalently, it distributes over the lattice operations). The
variety of `-groups is term equivalent to the subvariety, LG, of residuated
lattices defined by the equations (e/x)x ≈ e ≈ x(x\e); the term equivalence
is given by x−1 = e/x and x\y = x−1y, y/x = yx−1. See [1] for an accessible
introduction to the theory of `-groups.

A residuated bounded-lattice is an algebra L = 〈L,∧,∨, ·, \, /, e, 0〉 such that
〈L,∧,∨, ·, \, /, e〉 is a residuated lattice and L satisfies the equation x∨ 0 ≈ x.
Note that > = 0\0 = 0/0 is the greatest element of such an algebra. A
residuated (bounded-) lattice is called commutative if it satisfies the equation
xy ≈ yx and integral if it satisfies x ∧ e ≈ x.

Commutative, integral residuated bounded-lattices have been studied exten-
sively in both algebraic and logical form, and include important classes of
algebras, such as the variety of MV-algebras, which provides the algebraic set-
ting for ÃLukasiewicz’s infinite-valued propositional logic. Several term equiva-
lent formulations of MV-algebras have been proposed (see, for example, [8]).
Within the context of commutative, residuated bounded-lattices, MV-algebras
are axiomatized by the identity (x → y) → y ≈ x ∨ y, which is a relativized
version of the law ¬¬x ≈ x of double negation; in commutative residuated lat-
tices we write x → y for the common value of x\y and y/x, and ¬x for x → 0.
The term equivalence with the standard signature is given by x ¯ y = x · y,
¬x = x → 0, x⊕ y = ¬(¬x · ¬y) and x → y = ¬x⊕ y. The appropriate non-
commutative generalization of an MV-algebra is a residuated bounded-lattice
that satisfies the identities x/(y\x) ≈ x ∨ y ≈ (x/y)\x. These algebras have
recently been considered in [10], [15] and [16] under the name pseudo-MV-
algebras.

C. C. Chang proved in [7] that if G = 〈G,∧,∨, ·, −1, e〉 is a totally ordered
Abelian group and u < e, then the residuated-bounded lattice Γ(G, u) =
〈[u, e],∧,∨, ◦, \, /, e, u〉 – where x ◦ y = xy ∨ u, x\y = x−1y ∧ e and x/y =
xy−1∧ e – is an MV-algebra. Conversely, if L is a totally-ordered MV-algebra,
then there exists a totally ordered Abelian group with a strong order unit
u < e such that L ∼= Γ(G, u). This result was subsequently generalized for
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arbitrary Abelian `-groups by D. Mundici [24] and recently for arbitrary `-
groups by A. Dvurečenskij [10]. It should be noted that all three authors
have expressed their results in terms of the positive, rather than the negative,
cone. Mundici and Dvurečenskij have also shown that the object assignment
Γ can be extended to an equivalence between the category of MV-algebras
(respectively, pseudo-MV-algebras), and the category with objects Abelian
(respectively, arbitrary) `-groups with a strong order unit, and morphisms
`-group homomorphisms that preserve the unit.

We generalize the concept of an MV-algebra in the setting of residuated lat-
tices - by dropping integrality (x ∧ e ≈ x), commutativity (xy ≈ yx) and
the existence of bounds - to a class that includes `-groups, their negative
cones, generalized Boolean algebras and the 0-free reducts of MV-algebras.
The aim of this paper is to extend the aforementioned results of Mundici and
Dvurečenskij.

A generalized MV-algebra (GMV-algebra) is a residuated lattice that satisfies
the identities x/((x∨ y)\x) ≈ x∨ y ≈ (x/(x∨ y))\x. It is shown in Section 2,
see Lemma 2.9, that every GMV-algebra has a distributive lattice reduct.

The negative cone of a residuated lattice L = 〈L,∧,∨, ·, \, /, e〉 is the algebra
L− = 〈L−,∧,∨, ·, \L− , /L− , e〉, where L− = {x ∈ L | x ≤ e}, x\L−y = x\y ∧ e
and x/L−y = x/y∧e. It is easy to verify that L− is a residuated lattice. It will
be shown that if L is a GMV-algebra, then L− is a GMV-algebra, as well. As
noted before a residuated lattice is called integral, if e is the greatest element
of its lattice reduct. The negative cone of every residuated lattice is, obviously,
integral.

By a nucleus on a residuated lattice L we understand a closure operator γ on
L satisfying γ(a)γ(b) ≤ γ(ab), for all a, b in L.

We note that if L = 〈L,∧,∨, ·, \, /, e〉 is a residuated lattice and γ is a nucleus
on L, then the image Lγ of γ can be endowed with a residuated lattice structure
as follows (see Lemma 3.3):

Lγ = 〈Lγ,∧,∨γ, ◦γ, \, /, γ(e)〉

γ(a) ∨γ γ(b) = γ(a ∨ b)

γ(a) ◦γ γ(b) = γ(ab)

As an illustration, let u be a negative element of an `-group G, and let γu :
G− → G− be defined by γu(x) = x ∨ u, for all x ∈ G−. Then, γu is a nucleus
on G− and G−

γu
is equal to the 0-free reduct of Γ(G, u).

We say that a residuated lattice A is the direct sum of two of its subalgebras
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B,C, in symbols A = B⊕C, if the map f : B×C → A defined by f(x, y) = xy
is an isomorphism.

The primary purpose of this paper is to establish the following six results.

Theorem A (See Theorem 5.6.) A residuated lattice M is a GMV-algebra if
and only if there are residuated lattices G,L, such that G is an `-group, L is
the negative cone of an `-group, γ is a nucleus on L and M = G⊕ Lγ.

Theorem B (See Theorem 3.12.) A residuated lattice M is an integral GMV-
algebra if and only if there exists an `-group H and a nucleus γ on H−, such
that M ∼= H−

γ .

Let IGMV be the category with objects integral GMV-algebras and mor-
phisms residuated lattice homomorphisms. Also, let LG−

∗ be the category
with objects algebras 〈L, γ〉, such that L is the negative cone of an `-group
and γ is a nucleus on it such that its image generates L as a monoid. Let
the morphisms of this category be homomorphisms between these algebras.
The generalization of Mundici’s and Dvurečenskij’s results is provided by the
following theorem.

Theorem C (See Theorem 4.12.) The categories IGMV and LG−
∗ are equiv-

alent.

Theorem D (See Theorem 6.6.) A residuated lattice L is a GMV-algebra if
and only if L ∼= Gβ, for some `-group G and some core β on G. (For the
concept of a core, see page 32 and Lemma 6.8.)

Let GMV be the category with objects GMV-algebras and morphisms resid-
uated lattice homomorphisms. Also, let LG∗ be the category with objects
algebras 〈G, β〉 such that G is an `-group and β is core on G whose image
generates G; let the morphisms of this category be homomorphisms between
these algebras.

Theorem E (See Theorem 6.9.) The categories GMV and LG∗ are equiva-
lent.

Let GMV be the variety of GMV-algebras and let IGMV be the variety of
integral GMV-algebras.

Theorem F (See Theorem 7.3.) The varieties GMV and IGMV have decid-
able equational theories.
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2 Definitions and basic properties

We refer the reader to [4] and [20] for basic results in the theory of residuated
lattices. Here, we only review background material needed in the remainder
of the paper.

The operations \ and / may be viewed as generalized division operations, with
x/y being read as “x over y” and y\x as “y under x”. In either case, x is consid-
ered the numerator and y is the denominator. We refer to \ as the left division
operation and / as the right division operation. Other commonly used terms
for these operations are left residuation and right residuation, respectively.

As usual, we write xy for x · y and adopt the convention that, in the absence
of parenthesis, · is performed first, followed by \ and /, and finally by ∨ and
∧. For example, x/yz ∧ u\v represents the expression [x/(y · z)] ∧ (u\v). We
tend to favor \ in calculations, but any statement about residuated structures
has an opposite “mirror image” obtained by reading terms backwards (i.e.,
replacing x · y by y ·x and interchanging x/y with y\x). Examples of opposite
equations can be seen in properties (i)-(vi) of Lemma 2.1 below.

The existence of the division operations has the following basic consequences.

Lemma 2.1 [4] Residuated lattices satisfy the following identities:

(i) x(y ∨ z) ≈ xy ∨ xz and (y ∨ z)x ≈ yx ∨ zx
(ii) x\(y ∧ z) ≈ (x\y) ∧ (x\z) and (y ∧ z)/x ≈ (y/x) ∧ (z/x)
(iii) x/(y ∨ z) ≈ (x/y) ∧ (x/z) and (y ∨ z)\x ≈ (y\x) ∧ (z\x)
(iv) (x/y)y ≤ x and y(y\x) ≤ x
(v) x(y/z) ≤ (xy)/z and (z\y)x ≤ z\(yx)
(vi) (x/y)/z ≈ x/(zy) and z\(y\x) ≈ (yz)\x
(vii) x\(y/z) ≈ (x\y)/z
(viii) x/e ≈ x ≈ e\x
(ix) e ≤ x/x and e ≤ x\x
(x) (x/x)2 ≈ x/x and (x\x)2 ≈ x\x.

A residuated lattice is called commutative (respectively, cancellative), if its
monoid reduct is commutative (respectively, cancellative). It is shown in [2]
that the class CanRL of all cancellative residuated lattices is a variety with
defining equations xy/y ≈ x ≈ y\yx. As mentioned before, a residuated lat-
tice is called integral if it satisfies the identity e ∧ x ≈ x. The variety of all
integral residuated lattices will be denoted by IRL. We will also have the
occasion to refer to the subvariety of RL generated by all totally ordered
residuated lattices. We denote this variety by RLC and refer to its mem-
bers as representable residuated lattices. It follows from Jónsson’s Lemma
on congruence-distributive varieties (see [21]) that all subdirectly irreducible
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algebras in RLC are totally ordered and whence every representable residu-
ated lattice is a subdirect product of totally ordered residuated lattices. The
following result provides a concise equational basis for RLC .

Theorem 2.2 ([4], [20], see also [18]) A residuated lattice is representable,
i.e., it is a member of the variety RLC, if and only if it satisfies the identity
(z\(x/(x ∨ y))z ∧ e) ∨ (w(y/(x ∨ y))/w ∧ e) ≈ e.

Definition 2.3

(i) A generalized BL-algebra (GBL-algebra) is a residuated lattice that sat-
isfies the identities

((x ∧ y)/y)y ≈ x ∧ y ≈ y(y\(x ∧ y)).

(ii) A generalized MV-algebra (GMV-algebra) is a residuated lattice that sat-
isfies the identities

x/((x ∨ y)\x) ≈ x ∨ y ≈ (x/(x ∨ y))\x.

We denote the variety of all GBL-algebras by GBL and that of GMV-algebras
by GMV . GBL-algebras generalize BL-algebras, the algebraic counterparts of
basic logic (see [17]). In particular, representable, commutative, bounded (in-
tegal) GBL-algebras are (term equivalent to) the 0-free reducts of BL-algebras.

Lemma 2.4 [2] The preceding sets of identities have, respectively, the follow-
ing quasi-identity formulations:

x ≤ y ⇒ (x/y)y ≈ x ≈ y(y\x)

and

x ≤ y ⇒ x/(y\x) ≈ y ≈ (x/y)\x.

Moreover, the first set of identities is also equivalent to the property of divis-
ibility in the setting of residuated lattices:

x ≤ y ⇒ (∃z, w)(zy ≈ x ≈ yw).

Lemma 2.5 [2] Every GMV-algebra is a GBL-algebra.

PROOF. Let x, y be elements of L such that x ≤ y. Set z = (x/y)y and note
that, by Lemma 2.1, z ≤ x and z/y ≤ z/x.

Using Lemma 2.1(vii), (vi) and the defining quasi-equation for GMV-algebras,
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we have the following:

z ≤ x ⇒ (z/x)\z = x

⇒ ((z/x)\z)/y = x/y

⇒ (z/x)\(z/y) = x/y

⇒ (z/y)/((z/x)\(z/y)) = (z/y)/(x/y)

⇒ z/x = z/(x/y)y

⇒ (z/x)\z = (z/(x/y)y)\z
⇒ x = (x/y)y

Thus, x ≤ y implies x = (x/y)y. Likewise, x ≤ y implies y(y\x) = x. 2

Lattice-ordered groups and their negative cones are examples of cancellative
GMV-algebras. Non-cancellative examples include generalized Boolean alge-
bras.

Definition 2.6 An element a in a residuated lattice L is called invertible, if
a(a\e) = e = (e/a)a; a is called integral, if e/a = a\e = e. We denote the set
of invertible elements of L by G(L) and the set of integral elements by I(L).

Note that a is invertible if and only if there exists an element a−1 such that
aa−1 = e = a−1a. In this case a−1 = e/a = a\e. It is easy to see that
multiplication by an invertible element is an order automorphism.

Lemma 2.7 Let L be a GBL-algebra.

(i) Every positive element of L is invertible.
(ii) L satisfies the identities x/x ≈ x\x ≈ e.
(iii) L satisfies the identity e/x ≈ x\e.

PROOF. For the first property, let a be a positive element; by the defining
identity for GBL-algebras, we get a(a\e) = e = (e/a)a; that is, a is invertible.
By (i) and Lemma 2.1(ix), x/x and x\x are invertible for every x. Hence, by
Lemma 2.1(x), x/x = e = x\x. Finally, by (ii) and Lemma 2.1(v), x(e/x) ≤
x/x = e, hence e/x ≤ x\e. Likewise, x\e ≤ e/x. 2

Lemma 2.8 A residuated lattice is a GBL-algebra if and only if it satisfies
the identities x(x\y ∧ e) ≈ x ∧ y ≈ (y/x ∧ e)x.
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PROOF. Assume that L is a GBL-algebra and x, y ∈ L. By Lemma 2.7(ii)
and Lemma 2.1(ii), we get

x ∧ y = x(x\(x ∧ y)) = x(x\x ∧ x\y) = x(e ∧ x\y).

Likewise, we get the opposite identity.

Conversely assume that the identities in the statement of the lemma hold. We
first show that every positive element a is invertible. Indeed, e = a(a\e∧ e) ≤
a(a\e) ≤ e. So, a(a\e) = e and likewise (e/a)a = e. Arguing as in the proof
of (ii) of Lemma 2.7, we show that x\x = x/x = e, for every x ∈ L. Using
Lemma 2.1(ii), we get

x(x\(x ∧ y)) = x(x\x ∧ x\y) = x(e ∧ x\y) = x ∧ y.

Likewise, we obtain the opposite equation. 2

Lemma 2.9 Every GBL-algebra has a distributive lattice reduct.

PROOF. Let L be a GBL-algebra and x, y, z ∈ L. Invoking Lemmas 2.1 and
2.8, we have

x ∧ (y ∨ z) = [x/(y ∨ z) ∧ e](y ∨ z)

= [x/(y ∨ z) ∧ e]y ∨ [x/(y ∨ z) ∧ e]z

≤ (x/y ∧ e)y ∨ (x/z ∧ e)z

= (x ∧ y) ∨ (x ∧ z),

for all x, y, z. Thus, the lattice reduct of L is distributive. 2

Lemma 2.10 If x, y are elements of a GBL-algebra and x ∨ y = e, (x, y are
orthogonal), then xy = x ∧ y.

PROOF. We have, x = x/e = x/(x∨y) = x/x∧x/y = e∧x/y = y/y∧x/y =
(y ∧ x)/y. So, xy = ((x ∧ y)/y)y = x ∧ y. 2

The variety of integral GBL-algebras is denoted by IGBL and that of integral
GMV-algebras by IGMV . Obviously, IGBL = IRL ∩ GBL and IGMV =
IRL ∩ GMV .

Lemma 2.11
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(i) The variety IGBL is axiomatized, relative to RL, by the equations (x/y)y
≈ x ∧ y ≈ y(y\x).

(ii) The variety IGMV is axiomatized, relative to RL, by the equations
x/(y\x) ≈ x ∨ y ≈ (x/y)\x.

PROOF. In view of the alternative axiomatizations of GBL and GMV given
in Lemma 2.8, the proposed equations hold in the corresponding varieties. For
the reverse direction we verify that the proposed identities imply integrality.
This is obvious for the first set of identities for y = e. For the second set,
observe that for every x,

e ≤ e ∨ e/x = e/((e/x)\e) = e/(e ∨ x);

so e ∨ x ≤ e, i.e., x ≤ e. 2

Negative cones of `-groups are examples of integral GMV-algebras, hence also
of integral GBL-algebras. Moreover, these are cancellative residuated lattices,
that is, members of CanRL. It is shown in [2] that the class LG− of negative
cones of `-groups is a variety and LG− = IGMV∩CanRL = IGBL∩CanRL.
This result provides an equational basis for LG−.

Theorem 2.12 [2] The class, LG−, of negative cones of `-groups is a variety
and the equations xy/y ≈ x ≈ y\yx, x(x\y) ≈ x ∧ y ≈ (y/x)x form an
equational basis for it, relative to RL.

The variety of Brouwerian algebras is term equivalent to the subvariety Br
of residuated lattices axiomatized by the identity xy ≈ x ∧ y. It is clear that
Br ⊆ IGBL. The variety GBA of generalized Boolean Algebras is generated,
in the setting of residuated lattices, by the two-element residuated lattice 2
and GBA = IGMV ∩ Br (see [13]).

Lemma 2.13

(i) Every integral GBL-algebra satisfies the identity (y/x)\(x/y) ≈ x/y and
its opposite.

(ii) Every integral GMV-algebra satisfies the identity x/y ∨ y/x ≈ e and its
opposite.

(iii) Every integral GMV-algebra satisfies the identities x/(y∧z) ≈ x/y∨x/z,
(x ∨ y)/z ≈ x/z ∨ y/z and the opposite ones.

(iv) Every commutative integral GMV-algebra is representable. Consequently,
the subdirectly irreducible, commutative, integral GMV-algebras are to-
tally ordered.

PROOF.
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(i) For every integral GBL-algebra, y/x ≤ e, so (y/x)\(x/y) ≥ x/y. To show
the reverse inequality, we need to check that

((y/x)\(x/y))y ≤ x.

By Lemma 2.1(vii), it suffices to show that

(((y/x)\x)/y)y ≤ x.

Using Lemma 2.11(i), we see that the last equation is equivalent to

(y/((y/x)\x))((y/x)\x) ≤ x,

which in turn is equivalent to

y/((y/x)\x) ≤ x/((y/x)\x).

To show that this holds note that

y/((y/x)\x) ≤ y/x,

since y/x ≤ e, and that

y/x ≤ x/((y/x)\x),

since u ≤ v/(u\v) is valid in every residuated lattice, by Lemma 2.1(iv).

(ii) Using Lemma 2.11(ii), we have x/y ∨ y/x = (x/y)/((y/x)\(x/y)), which
simplifies to (x/y)/(x/y), by invoking (i) and the fact that integral GMV-
algebras are integral GBL-algebras. Finally, the last term is equal to e in
integral residuated lattices.

(iii) Since every GMV-algebra has a distributive lattice reduct by
Lemma 2.9, the equations in (iii) follow from (ii) and Proposition 6.10(ii)
of [4].

(iv) This follows from (ii) and [18]. 2

It will be shown in Section 5, refer to Corollary 5.5, that the assumption of
integrality in condition (iv) is not needed.

3 A concrete realization of integral generalized MV-algebras

A closure operator on a poset P is a map γ : P → P with the usual properties
of preserving the order, being extensive (x ≤ γ(x)), and being idempotent.
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Such a map is completely determined by its image

(3.1) C = imγ

by virtue of the formula

(3.2) γ(x) = min{c ∈ C : x ≤ c}.

A closure retract is any subset C ⊆ P such that the minima (3.2) exist for all
x ∈ P. Conditions (3.1) and (3.2) establish a bijective correspondence between
all closure operators γ and all closure retracts C of P . In what follows, we will
use Pγ to denote the closure retact on P corresponding to the closure operator
γ.

A nucleus on a residuated lattice L is a closure operator γ on the lattice reduct
of L such that γ(a)γ(b) ≤ γ(ab), for all a, b ∈ L. It is clear that a closure
operator γ on L is a nucleus if and only if γ(γ(a)γ(b)) = γ(ab), for all a, b ∈ L.
Note that the monotonicity condition in the definition of a nucleus can be
replaced by the inequality γ(x)γ(x\y) ≤ γ(y); so, the property that γ is a
nucleus on a residuated lattice can be expressed equationally in the expansion
of the language of residuated lattices by a unary operation. A closure retract
C of a residuated lattice L is called a subact of L if x/y, y\x ∈ C, for all
x ∈ C and y ∈ L.

As an example, note that if u is an element of an integral residuated lattice
L, then γu : L → L – defined by γu(x) = x∨ u, for all x ∈ L – is a nucleus on
L. Its image Lγu is the principal filter ↑u = {x ∈ L | u ≤ x}.

The next result describes the relationship between nuclei and subacts (see
[25], page 30; and [26], Corollary 3.7, for an earlier result in the setting of
Brouwerian meet-semilattices).

Lemma 3.1 Let γ be a closure operator on a residuated lattice L, and let Lγ be
the closure retract associated with γ. The following statements are equivalent.

(i) γ is a nucleus.
(ii) γ(a)/b, b\γ(a) ∈ Lγ, for all a, b ∈ L.
(iii) Lγ is a subact of L.

PROOF.

(i) ⇒ (ii) Let a, b ∈ L. We have,
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γ(γ(a)/b)b ≤ γ(γ(a)/b)γ(b) (γ is extensive)

≤ γ((γ(a)/b)b) (i)

≤ γ(γ(a)) (γ is monotone, Lemma 2.1(iv))

= γ(a). (γ is idempotent)

So, γ(γ(a)/b) ≤ γ(a)/b, by the defining property of residuated lattices. Since
the reverse inequality follows from the fact that γ is extensive, we have γ(a)/b =
γ(γ(a)/b) ∈ Lγ. Likewise, we obtain the result for the other division operation.

(ii) ⇒ (i) Let a, b ∈ L. Since γ is extensive, ab ≤ γ(ab), so a ≤ γ(ab)/b.
By the monotonicity of γ and the hypothesis, γ(a) ≤ γ(ab)/b. Using the
defining property of residuated lattices, we get b ≤ γ(a)\γ(ab). Invoking, once
more, the monotonicity of γ and the hypothesis, we obtain γ(b) ≤ γ(a)\γ(ab),
namely γ(a)γ(b) ≤ γ(ab).

(ii) ⇔ (iii) This is trivial by the definition of a subact. 2

Actually, it can be shown that an arbitrary map γ on a residuated lattice L
is a nucleus if and only if γ(a)/b = γ(a)/γ(b) and b\γ(a) = γ(b)\γ(a), for all
a, b ∈ L (see [25], page 30).

Corollary 3.2 Conditions (3.1) and (3.2) establish a bijective correspondence
between nuclei on and subacts of a residuated lattice.

PROOF. Use Lemma 3.1. 2

The next result shows that every subact of a residuated lattice is a residuated
lattice in its own right.

Lemma 3.3 Let L = 〈L,∧,∨, ·, \, /, e〉 be a residuated lattice, γ be a nucleus
on L and Lγ be the subact associated with γ. Then the algebraic system Lγ =
〈Lγ,∧,∨γ, ◦γ, \, /, γ(e)〉 – where x ◦γ y = γ(x · y) and x∨γ y = γ(x∨ y) – is a
residuated lattice.

PROOF. Obviously, γ(e) is the multiplicative identity of Lγ. Further, Lγ,
being the image of a closure operator on L, is a lattice with joins and meets
defined by x∨γ y = γ(x∨y) and x∧γ y = x∧y, for all x, y ∈ Lγ. One can easily
check that multiplication is associative. Finally, to check that ◦γ is residuated,
recall that Lγ is closed under the division operations by Lemma 3.1. Consider
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x, y, z ∈ Lγ. We have x ◦γ y ≤ z ⇔ γ(xy) ≤ z ⇔ xy ≤ z (since z = γ(z) and
xy ≤ γ(xy)) ⇔ y ≤ x\z. Likewise, we have x ◦γ y ≤ z ⇔ x ≤ z/y. 2

Theorem 3.4 If L = 〈L,∧,∨, ·, \, /, e〉 is a GMV-algebra, γ a nucleus on it
and Lγ the associated subact, then

(i) ∨γ = ∨;
(ii) γ preserves binary joins;
(iii) γ(e) = e;
(iv) Lγ = 〈Lγ,∧,∨, ◦γ, \, /, e〉 is a GMV-algebra; and
(v) Lγ is a filter in L.

PROOF.

(i) Since L is a GMV-algebra, if x ∈ Lγ, then x ∨ y = x/((x ∨ y)\x) ∈ Lγ, by
Lemma 3.1(ii). Thus, ∨γ is the restriction of ∨ on Lγ.

(ii) It is well-known, and easy to prove, that if γ is a closure operator on a
poset P and X is a subset of P such that P ∨

X exists, then Pγ
∨

γ(X) exists
and Pγ

∨
γ(X) = γ(P ∨

X). Thus, (i) and (ii) are equivalent.

(iii) Since γ is extensive, e ≤ γ(e). Hence, γ(e) is invertible, by Lemma 2.7(i).
Since γ is a nucleus, γ(e)γ(e) ≤ γ(e), so γ(e) ≤ e. Thus, γ(e) = e.

(iv) By Lemma 3.3, Lγ is a residuated lattice. It is a GMV-algebra because
the join and division operations of Lγ are the restrictions of the corresponding
operations in L, and L is a GMV-algebra.

(v) If x ∈ Lγ, y ∈ L and x ≤ y, then by Lemma 3.1, y = x∨y = x/((x∨y)\x)
is an element of Lγ. Since Lγ is also a sublattice, it is a lattice-filter. 2

Corollary 3.5 If L is an integral GMV-algebra and γ is a nucleus on L, then
Lγ is an integral GMV-algebra.

Lemma 3.6 Let γ be a nucleus on the negative cone L of an `-group. If z ∈ L
and u = γ(z), then γ agrees with the nucleus γu on the principal filter ↑ z.

PROOF. Let x ≥ z. We will show that γ(x) = u ∨ x. Note that u ∨ x =
γ(z) ∨ x ≤ γ(x), since γ is monotone and extensive. On the other hand,
x ≤ u∨x, so γ(x) ≤ γ(u∨x) = u∨x, because Lγ is a filter, by Theorem 3.4(v).
2

Corollary 3.7 Every nucleus on a GMV-algebra is a lattice homomorphism.
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PROOF. In view of Theorem 3.4(ii), we need only show that γ preserves
binary meets. Let x, y be elements of a GMV-algebra and set z = x ∧ y and
u = γ(z). Recall that a GMV-algebra has a distributive lattice reduct; refer
to Lemma 2.5 and Lemma 2.9. Whence by Lemma 3.6, γ(x∧y) = γu(x∧y) =
u ∨ (x ∧ y) = (u ∨ x) ∧ (u ∨ y) = γu(x) ∧ γu(y) = γ(x) ∧ γ(y). 2

By Corollary 3.5, the image of a nucleus on the negative cone of an `-group is
an integral GMV-algebra. In the remainder of this section we are concerned
with the proof of the converse, namely that every integral GMV-algebra is the
image of a nucleus on the negative cone of an `-group. Our proof is based on
Theorem 3.11, which is due to B. Bosbach, see [5] and [6].

Definition 3.8 A cone algebra is an algebra C = 〈C, \, /, e〉 that satisfies:

(x\y)\(x\z) ≈ (y\x)\(y\z) (z/y)/(x/y) ≈ (z/x)/(y/x)

e\y ≈ y y/e ≈ y

x\(y/z) ≈ (x\y)/z x/(y\x) ≈ (y/x)\y
x\x ≈ e x/x ≈ e

Lemma 3.9 ([5], [6]) If C = 〈C, \, /, e〉 is a cone algebra, then

(i) for all a, b ∈ C, a\b = e ⇔ b/a = e;
(ii) the relation ≤ on C, defined by a ≤ b ⇔ a\b = e, is a semilattice order

with a ∨ b = a/(b\a); in particular a ≤ e, for all a;
(iii) if a ≤ b, then c\a ≤ c\b and a/c ≤ b/c.

It is easy to see that if L = 〈L,∧,∨, ·, \, /, e〉 is an integral GMV-algebra – for
example, L ∈ LG− – then 〈L, \, /, e〉 is a cone algebra, called the cone algebra
of L.

It will be shown that every cone algebra is a subalgebra of the cone algebra of
a residuated lattice in LG−. In the following construction, the algebra in LG−
is defined as the union of an ascending chain 〈Cn | n ∈ N〉 of cone algebras,
each of which is a subalgebra of its successor. In the process of constructing
the algebras Cn, we also define in Cn+1 binary products of elements of Cn.
Each such product is identified with the congruence class of the corresponding
ordered pair. The definition below of the division operations becomes less
opaque if we note that the negative cones of any `-group satisfies the law
ab\cd = (b\(a\c)) · (((a\c)\b)\((c\a)\d)) and its opposite.

Let C be a cone algebra. Define the operations \ and / and the relations Θ
and Θ′ on C × C, by

(a, b)\(c, d) = (b\(a\c), ((a\c)\b)\((c\a)\d))
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(d, c)/(b, a) = ((d/(a/c))/(b/(c/a)), (c/a)/b)

(a, b) Θ (c, d) ⇔ (a, b)\(c, d) = (e, e) and (c, d)\(a, b) = (e, e)

(a, b) Θ′ (c, d) ⇔ (a, b)/(c, d) = (e, e) and (c, d)/(a, b) = (e, e)

Lemma 3.10 [6] Let C = 〈C, \, /, e〉 be a cone algebra. Then:

(i) Θ = Θ′.
(ii) Θ is a congruence relation of C×C.
(iii) s(C) = 〈C × C, \, /, e〉/Θ is a cone algebra.
(iv) For each x ∈ C, let [(x, e)]Θ denote the Θ-congruence class of (x, e). Then

the map x 7→ [(x, e)]Θ is an embedding of C into s(C).

Let C0 = C, Cn+1 = s(Cn), for every natural number n, and C =
⋃

Cn, the
directed union of the Cn’s.

We can now establish the main result of [6].

Theorem 3.11 [6] Every cone algebra C is a subalgebra of the cone algebra
of some Ĉ ∈ LG−. Moreover, every element of Ĉ can be written as a product
of elements of C.

PROOF. We will show that the algebra C defined above is the cone algebra,
i.e., the {\, /, e}-reduct, of a Ĉ ∈ LG−.

For two elements of C, we define their product, ab, to be the element [(a, b)]Θ.
This is well defined, because of the embedding of Cn into Cn+1, for every n.
Let Ĉ = 〈C,∧,∨, ·, \, /, e〉, where \ = \C, / = /C, x ∨ y = x/(y\x) and

x ∧ y = (x/y)y. We will show that Ĉ ∈ LG−.

By the definition of the operations in Ĉ and Lemma 3.9(ii), Ĉ is a join semi-
lattice. Note that ab\cd = (b\(a\c)) · (((a\c)\b)\((c\a)\d)). In particular,
ab\c = b\(a\c) and a\ab = b. The opposite equations hold, as well. Finally,
note that e/a = e = a\e.

Multiplication is order preserving:
Let a ≤ c; then e = a\c, by the definition of ≤. To show that ab ≤ cb, we note
that

ab\cb = b\[(c\a)\b] = [(c\a)b]\b.
On the other hand,

b/[(c\a)b] = (b/b)/(c\d) = e/(c\d) = e.

This successively yields, (c\a)b ≤ b, [(c\a)b]\b = e, ab\cb = e and ab ≤ cb.
Likewise a ≤ c implies ba ≤ bc.
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Multiplication is residuated:
Note that a(a\c) ≤ c, since [a(a\c)]\c = (a\c)\(a\c) = e. If ab ≤ c, then
a\ab ≤ a\c, so b ≤ a\c. Conversely, if b ≤ a\c, then ab ≤ a(a\c) ≤ c. The
other equivalence is obtained similarly.

Multiplication is associative:
We have the following sequence of equivalences:

(ab)c ≤ d ⇔ ab ≤ d/c ⇔ b ≤ a\(d/c)

⇔ b ≤ (a\d)/c ⇔ bc ≤ (a\d)

⇔ a(bc) ≤ d.

∧ is the meet operation:
We have a(a\b) ≤ b and a(a\b) ≤ ae = a. Additionally, if c ≤ a and c ≤ b,
then e = c\a = c\b. We have, c\a(a\b) = (c\a)\(c\b) = e, so c ≤ a(a\b).
Interchanging the roles of a and b we get that c ≤ a, b ⇔ c ≤ b(b\a). The
opposite properties are obtained similarly.

Thus, Ĉ is a residuated lattice. Since it satisfies the identities x\xy ≈ y ≈ yx/x
and x/(y\x) ≈ x ∨ y ≈ (x/y)\x, it is in LG−, by Theorem 2.12. Finally, by
construction, every element of Ĉ is the product of elements of C. 2

The algebra Ĉ is called the product extension of C.

We can now prove the main result of this section.

Theorem 3.12 The residuated lattice M is an integral GMV-algebra if and
only if M ∼= Lγ, for some L ∈ LG− and some nucleus γ on L.

PROOF. One direction follows from Corollary 3.5. For the opposite impli-
cation, let M = 〈M,∧,∨, ◦, \, /, e〉 be an integral GMV-algebra. Using Lem-
mas 2.5, 2.11(ii), 2.1(vi), 2.7(ii), 2.1(viii), 2.1(vii) and 2.11(i), we see that
〈M, \, /, e〉 is a cone algebra. So, by Theorem 3.11, it is a subreduct of a
residuated lattice L = M̂ ∈ LG− such that M generates L as a monoid.

Since the division operations of M are the restrictions of the division oper-
ations of L, we use the symbols \ and / for the latter, as well. Moreover,
the same holds for the join and the constant e, because in integral GMV-
algebras they are term definable by the division operations: x ∨ y ≈ x/(y\x)
and e ≈ x/x. We use “·” to denote the multiplication of L.
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Since M generates L as a monoid, for every x ∈ L there exists a sequence
(x1, . . . , xn) of elements of M such that x = x1 · · ·xn.

Claim 1: If z ∈ M, x ∈ L and (x1, . . . , xn) is a sequence of elements of M such
that x = x1 · · · xn, then z ∨ x = z ∨ x1 ◦ · · · ◦ xn.

Indeed,

z ∨ x = z/(x\z) (axiom of IGMV-algebras)

= z/((x1 · · · xn)\z)

= z/[xn\(. . . (x2\(x1\z)) . . . )] (Lemma 2.1(vi))

= z/((x1 ◦ · · · ◦ xn)\z) (Lemma 2.1(vi))

= z ∨ x1 ◦ · · · ◦ xn (axiom of IGMV-algebras)

Claim 2: Let (x1, . . . , xn) and (y1, . . . , ym) be sequences of elements of M such
that x1 · · ·xn = y1 · · · ym. Then, x1 ◦ · · · ◦ xn = y1 ◦ · · · ◦ ym.

Indeed, x1 ◦ · · · ◦ xn ∨ y1 ◦ · · · ◦ ym = x1 ◦ · · · ◦ xn ∨ x1 ◦ · · · ◦ xn, by the
preceding claim. It follows that y1 ◦ · · · ◦ ym ≤ x1 ◦ · · · ◦ xn, and likewise,
x1 ◦ · · · ◦ xn ≤ y1 ◦ · · · ◦ ym. Hence, x1 ◦ · · · ◦ xn = y1 ◦ · · · ◦ ym.

We now define a map γ on L as follows: if x ∈ L and (x1, . . . , xn) is a sequence
of elements of M such that x = x1 · · · xn, we let γ(x) = x1 ◦ · · · ◦xn. By Claim
2, γ is well-defined. We will show that it is a nucleus on L, Lγ = M and
Lγ
∼= M.

Note that γ(x) ∈ M , for all x ∈ L, so by setting z = γ(x) in the statement
of Claim 1, we get γ(x)∨ x = γ(x). So, x ≤ γ(x), for all x ∈ L. If x ≤ y, then

γ(x) ≤ γ(y) ∨ γ(x)

= γ(y) ∨ x (Claim 1 for z = γ(y))

≤ γ(y) ∨ y (x ≤ y)

≤ γ(y) (since γ is extensive)

This shows that γ is monotone. The following computation shows that γ is
idempotent, and hence a closure operator.

γ(γ(x)) = γ(x1 ◦ · · · ◦ xn) = x1 ◦ · · · ◦ xn = γ(x).

Finally, if x = x1 · · · xn and y = y1 · · · ym, are two representations of x and y
in terms of elements of M , then
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γ(x)γ(y) ≤ γ(γ(x)γ(y)) (since γ is extensive)

= γ(x) ◦ γ(y) (definition of γ)

= (x1 ◦ · · · ◦ xn) ◦ (y1 ◦ · · · ◦ ym) (definition of γ)

= γ(xy) (definition of γ)

Thus, γ is a nucleus.

It is clear that Lγ = M , by the definition of γ(x). Further, we have already
observed that the division operations, join and e agree on Lγ and M. Also,
for x, y ∈ M, x ◦γ y = γ(xy) = x ◦ y. Finally, the meet operation on the
two structures is the same, since integral GMV-algebras satisfy the identity
x ∧ y ≈ (x/y)y. Thus, the two structures M and Lγ are identical. 2

As an example, we note that the collection of all co-finite subsets of ω is the
universe of a generalized Boolean algebra A, hence an integral GMV-algebra.
It is easy to see that A ∼= ((Z−)ω)γ, where Z is the `-group of the integers
under addition and the natural order, and γ((xn)n∈ω) = (xn ∨ (−1))n∈ω.

4 A categorical equivalence for integral GMV-algebras

In this section we extend the representation of integral GMV-algebras, dis-
cussed in the previous section, to a categorical equivalence.

Let IGMV be the category with objects integral GMV-algebras and mor-
phisms residuated lattice homomorphisms. Also, let LG−

∗ be the category
with objects algebras 〈L,∧,∨, ·, \, /, e, γ〉, where L = 〈L,∧,∨, ·, \, /, e〉 ∈ LG−
and γ is a nucleus on L such that its image generates L as a monoid. (In what
follows, we will use the notation 〈L, γ〉 for the objects of LG−

∗ .) Let the mor-
phisms of this category be homomorphisms between these algebras. The main
result of this section, Theorem 4.12, asserts that the two categories defined
above are equivalent.

Definition 4.2 and Lemma 4.3 below have been influenced by results in [24].
Lemmas 4.5 and 4.7 are non-commutative, unbounded versions of results in
the same paper.

Lemma 4.1 Let a, b, c be elements of a residuated lattice L ∈ LG−. Then,
ab = c iff (a = c/b and c ≤ b) iff (b = a\c and c ≤ a).

PROOF. We prove only the first equivalence. If ab = c, then ab/b = c/b,
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so, by Theorem 2.12, a = c/b. Moreover, c = ab ≤ eb ≤ b, by integrality.
Conversely, if a = c/b and c ≤ b, then ab = (c/b)b. So, ab = c ∧ b, because
L ∈ IGBL, by Theorem 2.12. Since c ≤ b, we get ab = c. 2

Recall that if γ is a nucleus on some L ∈ LG−, the monoid multiplication ◦γ

of Lγ is defined by x ◦γ y = γ(xy), for all elements x, y ∈ L (see Lemma 3.3).

Definition 4.2 Let γ be a nucleus on L ∈ LG− and let x be an element of
L. A sequence (x1, . . . , xn) of elements of Lγ is called a decomposition of x
with respect to γ if x = x1 · · ·xn. A decomposition is called canonical if, in
addition, xi ◦γ xi+1 = xi, for all i ∈ {1, . . . , n− 1}.

Lemma 4.3 Let L ∈ LG− and let γ be a nucleus on L such that Lγ generates
L as a monoid. Then every element of L has a canonical decomposition with
respect to γ. Moreover, if (x1, . . . , xn) and (x′1, . . . , x

′
m) are canonical decom-

positions of the same element with respect to γ and m ≥ n, then xi = x′i, for
all i ∈ {1, . . . , n} and x′i = e for all i ∈ {n + 1, . . . , m}.

PROOF. We first construct a canonical decomposition of an arbitrary ele-
ment x of L. Let x1 = γ(x) and xi+1 = γ((x1 · · ·xi)\x), for all i ≥ 1. We
will prove that there exists a natural number n such that x = x1 · · · xn and
xi ◦γ xi+1 = xi for all i ∈ {1, . . . , n− 1}.

We show, by induction, that x ≤ x1 · · · xk, for every integer k ≥ 1. For k = 1
we have x ≤ γ(x) = x1. If x ≤ x1 · · · xk, then Lemma 2.11(i) yields

x = x1 · · · xk ∧ x

= x1 · · · xk · [(x1 · · · xk)\x]

≤ x1 · · · xk · γ((x1 · · ·xk)\x)

= x1 · · · xk · xk+1.

Next, let z be any element of L such that z ≤ x and set u = γ(z). By
Lemma 3.6, the maps γ and γu agree on ↑ x. The arguments of γ in the
definition of the elements xi, as well as in the equality γ(xi · xi+1) = xi, are in
↑ x, so we can replace γ by γu. In particular, a decomposition of an element
x is canonical with respect to γ if and only if it is canonical with respect to
some/every γu such that u = γ(z) and z ≤ x.

Applying Lemma 4.1, for a = xi, b = xi\((x1 · · ·xi−1)\x) and c = (x1 · · ·xi−1)\x,
we obtain for all i ≥ 1,

xi[xi\((x1 · · ·xi−1)\x)] = (x1 · · · xi−1)\x,
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where x1 · · · xi−1 = e for i = 1. It follows that, for all i ≥ 1,

xi ◦γ xi+1 = γ(xixi+1) = γu(xixi+1)

= u ∨ (xixi+1) = u ∨ (xiγu((x1 · · ·xi)\x))

= u ∨ xi(u ∨ [(x1 · · · xi)\x])

= u ∨ xiu ∨ xi[(x1 · · · xi)\x]

= u ∨ xiu ∨ xi[xi\((x1 · · · xi−1)\x)]

= u ∨ xiu ∨ [(x1 · · · xi−1)\x]

= u ∨ [(x1 · · · xi−1)\x]

= γu((x1 · · · xi−1)\x)

= γ((x1 · · · xi−1)\x) = xi.

We next show that (x1 · · · xk)\x = uk\x, for all k ≥ 1, using induction on k.
For k = 1, we have

x1\x = γ(x)\x = γu(x)\x = (x ∨ u)\x = x\x ∧ u\x = e ∧ u\x = u\x.

Assume that the statement is true for k. To show that it is true for k +1, note
that, using properties (iii) and (vi) of Lemma 2.1, we get

(x1 · · ·xk+1)\x = xk+1\[(x1 · · · xk)\x]

= γ((x1 · · ·xk)\x)\[(x1 · · · xk)\x]

= [u ∨ ((x1 · · · xk)\x)]\[(x1 · · · xk)\x]

= u\[(x1 · · · xk)\x]∧
[(x1 · · ·xk)\x]\[(x1 · · · xk)\x]

= u\[(x1 · · · xk)\x] ∧ e

= u\(uk\x) = uk+1\x.

We have shown that (x1 · · · xk)\x = uk\x, for all k ≥ 1.

Since L is the monoid generated by Lγ, there exist a natural number n and ele-
ments a1, . . . , an ∈ Lγ such that x = a1 · · · an. Thus, u ≤ γ(x) = γ(a1 · · · an) =
a1 ◦γ · · · ◦γ an ≤ ai, for all i. It follows that un ≤ a1 · · · an = x. Consequently,
e ≤ un\x = (x1 · · · · xn)\x, that is, x1 · · ·xn ≤ x. Since the reverse inequality
was established above, we have x = x1 · · · xn.

To establish uniqueness, let (x1, . . . , xn) and (x′1, . . . , x
′
m) be canonical decom-

positions of an element x with respect to γ and m ≥ n. Then, xi ◦γ xi+1 = xi,
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x′i ◦γ x′i+1 = x′i, for all appropriate values of i, and x1 · · ·xn = x′1 · · · x′m. So,
γ(x1 · · · xn) = γ(x′1 · · · x′m), i.e.,

x1 ◦γ · · · ◦γ xn = x′1 ◦γ · · · ◦γ x′m.

Hence x1 = x′1, by the defining property of canonical decompositions. Con-
sequently, x1\x1x2 · · · xn = x′1\x′1x′2 · · · x′m, so x2 · · · xn = x′2 · · · x′m, by can-
cellativity. Proceeding inductively, we get xi = x′i, for all i ∈ {1, . . . , n}.
Another application of cancellativity yields e = x′n+1 · · ·x′m, hence x′i = e for
all i ∈ {n + 1, . . . , m}, by integrality. 2

It follows from the preceding lemma that each element has a canonical de-
composition unique up to the addition of extra terms, equal to e, at the end
of the sequence. Thus, when we consider canonical decompositions of a finite
set of elements, we may assume that all have the same length.

Corollary 4.4 Let L ∈ LG− and let γ be a nucleus on L. If (x1, . . . , xn) and
(y1, . . . , yn) are canonical decompositions of the elements x and y, respectively,
with respect to γ and x ≤ y, then xi ≤ yi, for all i ≤ n.

PROOF. In view of the preceding lemma, we may assume that xi and yi

are given by the formulas at the beginning of its proof. Let z be an element
of L such that z ≤ x ∧ y and let u = γ(z). From the proof of the previous
theorem we have that (x1 · · ·xk)\x = uk\x, and (y1 · · · yk)\y = uk\y, for all
k ∈ {1, . . . , n}. Thus, for all i ∈ {1, . . . , n},

xi = γ((x1 · · · xi−1)\x)

= γ(ui−1\x)

≤ γ(ui−1\y)

= γ((y1 · · · yi−1)\y)

= yi,

where x1 · · · xi−1 = y1 · · · yi−1 = e, if i = 1. 2

Lemma 4.5 Let L ∈ LG− and let γ be a nucleus on L such that Lγ generates
L as a monoid. Also, let (x1, . . . , xn) and (y1, . . . , yn) be canonical decomposi-
tions for the elements x and y, respectively. Then,

x ∧ y =
n∏

i=1

(xi ∧ yi) and x ∨ y =
n∏

i=1

(xi ∨ yi).
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PROOF. Let (z1, . . . , zn) be a canonical decomposition of z = x∧y. Without
loss of generality we assume that the length of the decomposition of z is n.
We can do that by extending the decompositions of x and y or of z with extra
terms each equal to e. Obviously,

n∏

i=1

(xi ∧ yi) ≤
n∏

i=1

xi ∧
n∏

i=1

yi = x ∧ y = z

Moreover, z ≤ x, y, so zi ≤ xi, yi, for all i, by Corollary 4.4; hence zi ≤ xi∧ yi.
Consequently,

z =
n∏

i=1

zi ≤
n∏

i=1

(xi ∧ yi).

Thus,

z =
n∏

i=1

(xi ∧ yi).

The proof for joins is analogous. 2

The following refinement lemma can be found in [11]. Its importance in the
proof of the categorical equivalence was suggested to us by the considerations
in [10]. For completeness, we give the proof in the language of negative cones
of `-groups.

Lemma 4.6 ([11], Theorem 1, p. 68) Let L ∈ LG− and let a1, ..., an, b1, ..., bm

be elements of L. The following statements are equivalent.

(1) The equality a1 · · · an = b1 · · · bm holds.
(2) There exist elements cij of L, where 1 ≤ i ≤ n and 1 ≤ j ≤ m, such that

for all i, j,

aj =
m∏

i=1

cij, bi =
n∏

j=1

cij and
m∏

l=j+1

cil ∨
n∏

k=i+1

ckj = e.

Notation: We denote the fact that condition (2) holds by the following config-
uration:

a1 · · · an

b1

...

bm







c11 · · · c1n

...
...

cm1 · · · cmn







Thus, with respect to this description, condition (2) states that for all i and
j, aj is the product of the elements of the j-th column, bi is the product of
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the elements of the i-th row and that the product of the elements to the right
of cij is orthogonal to the product of elements below it.

PROOF. First, we show that (2) implies (1). Recall that if x ∨ y = e, then
xy = yx, by Lemma 2.10. For m = n = 2, we have a1a2 = c11c21c12c22 =
c11c12c21c22 = b1b2. We proceed by induction on the pair (m,n). Let m ≥ 2,
n > 2 and assume that the lemma is true for all pairs (m, k), where k < n.
We will show it is true for the pair (m,n).

Suppose that condition (2) holds. It is easy to see that

a2 · · · an

c1

...

cm







c12 · · · c1n

...
...

cm2 · · · cmn







and

a1 c

b1

...

bm







c11 c1

...
...

cm1 cm







where c = c1 · · · cm. So, a1a2 · · · an = a1(c1 · · · cm) = a1c = b1b2 · · · bm. Note
that the lemma holds for the pair (m,n) if and only if it holds for the pair
(n,m), a fact that completes the induction proof.

For the converse we use induction, as well. We first prove it for m = n = 2.
Assume that a1a2 = b1b2 = c and set

c11 = a1 ∨ b1, c12 = a2/c22

c21 = c11\a1, c22 = a2 ∨ b2

Using Lemma 2.13(iii), Lemma 4.1 and Lemma 2.1 we get

c12 = a2/c22 = a2/(a2 ∨ b2)

= (a1\c)/(a1\c ∨ b1\c) = (a1\c)/((a1 ∧ b1)\c)
= a1\[c/((a1 ∧ b1)\c)] = a1\[(a1 ∧ b1) ∨ c]

= a1\(a1 ∧ b1) = a1\a1 ∧ a1\b1

= e ∧ a1\b1 = a1\b1 ∧ b1\b1

= (a1 ∨ b1)\b1 = c11\b1.

Similarly, we show that c21 = b2/c22. So, we have

c11c21 = c11(c11\a1) = c11 ∧ a1 = (a1 ∨ b1) ∧ a1 = a1.
c12c22 = (a2/c22)c22 = a2 ∧ c22 = a2.
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c11c12 = c11(c11\b1) = c11 ∧ b1 = b1.
c21c22 = (b2/c22)c22 = b2 ∧ c22 = b2.

Finally, c21 ∨ c12 = c11\a1 ∨ c11\b1 = c11\(a1 ∨ b1) = c11\c11 = e.

For the general case, we proceed by induction on the pair (m,n). Let m ≥ 2,
n > 2 and assume that the lemma is true for all pairs (m, k), where k < n. We
will show it is true for the pair (m,n). Assume that a1a2 · · · an = b1b2 · · · bm

and set a = a2a3...an. So, a1a = b1b2 · · · bm. By the induction hypothesis, we
get

a1 a

b1

...

bm







c11 c12

...
...

cm1 cm2







and

a2 · · · an

c12

...

cm2







d12 · · · d1n

...
...

dm2 · · · dmn







for some cij, dkl, with appropriate indices. So, we have,

a1 a2 . . . an

b1

...

bm







c11 d12 . . . d1n

...
...

cm1 dm2 . . . dmn







2

Lemma 4.7 Let L ∈ LG−, γ be a nucleus on it and a, a1, . . . , an ∈ Lγ. Then
a = a1 · a2 · · · an if and only if a = a1 ◦γ a2 ◦γ · · · ◦γ an and ak = (ak ◦γ ak+1 ◦γ

· · · ◦γ an)/(ak+1 ◦γ ak+2 ◦γ · · · ◦γ an), for all 1 ≤ k < n.

PROOF. We use induction on n. For n = 2, if a = a1a2, then γ(a) = γ(a1a2),
so a = a1 ◦γ a2. Moreover, by Lemma 4.1, a1 = a/a2, so a1 = (a1 ◦γ a2)/a2.
Conversely, if a = a1 ◦γ a2 and (a1 ◦γ a2)/a2 = a1, then a = γ(a1a2) ≤ γ(a2) =
a2. Since a1 = a/a2, we get a = a1a2, by Lemma 4.1.

Assume now that the statement is true for all numbers less than n. Note that
if a1a2 · · · an ∈ Lγ, then a2 · · · an ∈ Lγ, since a1a2 · · · an ≤ a2 · · · an and Lγ is
a filter, by Theorems 3.4 and 2.12.
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a = a1(a2 · · · an)

⇔ a = a1b, b = a2 · · · an and b ∈ Lγ

⇔ a = a1 ◦γ b, a1 = a/b, b = a2 ◦γ · · · ◦γ an and

ak = (ak ◦γ ak+1 ◦γ · · · ◦γ an)/(ak+1 ◦γ ak+2 ◦γ · · · ◦γ an),

for all 2 ≤ k < n

⇔ a = a1 ◦γ a2 ◦γ · · · ◦γ an and

ak = (ak ◦γ ak+1 ◦γ · · · ◦γ an)/(ak+1 ◦γ ak+2 ◦γ · · · ◦γ an),

for all 1 ≤ k < n.

2

Lemma 4.8 Assume that K,L ∈ LG−, γ1, γ2 are nuclei on K,L and Kγ1,
Lγ2 generate K and L as monoids, respectively. Let f : Kγ1 → Lγ2 be a
residuated lattice homomorphism and let a1, . . . , an, b1, . . . , bm be elements of
Kγ1, such that a1a2 · · · an = b1b2 · · · bm, where multiplication is in K. Then,
f(a1)f(a2) · · · f(an) = f(b1)f(b2) · · · f(bm), where multiplication takes place in
L.

PROOF. First note that, for all c1, c2, . . . , cn ∈ Kγ1 , if c1c2 · · · cn ∈ Kγ1 , then

f(c1c2 · · · cn) = f(c1)f(c2) · · · f(cn).

Indeed, by Lemma 4.7, the statement c = c1c2 · · · cn, for an element c ∈ K,
is equivalent to a system of IGMV-algebra equations in Kγ1 . Since f is a
homomorphism, the same equations hold for the images of the elements under
f . Applying Lemma 4.7 again, we get f(c) = f(c1)f(c2) · · · f(cn).

Next, the equality a1a2 · · · an = b1b2 · · · bm implies, by Lemma 4.6, that there
exist cij ∈ Kγ1 , such that if for all i, j,

aj =
m∏

i=1

cij, bi =
n∏

j=1

cij and
m∏

l=j+1

cil ∨
n∏

k=i+1

ckj = e.

Note that all of the products above are in Kγ1 . Using the observation above
and the fact that f preserves joins (recall that the join operation in Kγ1 is
the restriction of the join operation in K, by Theorems 3.4 and 2.12), we get
that, for all i, j,

f(aj) =
m∏

i=1

f(cij), f(bi) =
n∏

j=1

f(cij) and
m∏

l=j+1

f(cil) ∨
n∏

k=i+1

f(ckj) = e.
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Finally, we obtain

f(a1)f(a2) · · · f(an) = f(b1)f(b2) · · · f(bm)

by applying Lemma 4.6 once more. 2

The following result is an immediate consequence of Theorem 1.4.5 of [3].

Lemma 4.9 Any multiplicative meet-homomorphism between two members of
LG− is a residuated lattice homomorphism.

Lemma 4.10 Let K,L ∈ LG−, and let γ1, γ2 be nuclei on K,L, respectively,
such that Kγ1 , Lγ2 generate K,L as monoids. If f : Kγ1 → Lγ2 is a residuated
lattice homomorphism, then there exists a unique homomorphism f̄ : K → L,
such that f ◦ γ1 = γ2 ◦ f̄ .

PROOF. By assumption every element of K is a product of elements of
Kγ1 . By Lemma 4.8, the map f̄ : K → L, defined by f̄(x1x2 · · ·xn) =
f(x1)f(x2) · · · f(xn), for x1, x2 . . . xn ∈ Kγ1 , is well defined and obviously pre-
serves multiplication.

If x ∈ K, then there exist x1, . . . , xn ∈ Kγ1 such that x = x1 · · ·xn. Hence,
f̄(γ1(x)) = f(γ1(x)) = f(γ1(x1 · · · xn)) = f(x1 ◦γ1 · · · ◦γ1 xn) = f(x1) ◦γ2 · · · ◦γ2

f(xn) = γ2(f(x1) · · · f(xn)) = γ2(f̄(x)). Thus, f̄ ◦ γ1 = γ2 ◦ f̄ .

Moreover, if (x1, . . . , xn) is a canonical decomposition for x with respect to
γ1, then x = x1 · · · xn and xi ◦γ1 xi+1 = xi. So, f̄(x) = f(x1) · · · f(xn) and
f(xi) ◦γ2 f(xi+1) = f(xi), i.e., (f(x1), . . . , f(xn)) is a canonical decomposition
for f̄(x) with respect to γ2.

We can now show that f̄ preserves meets. Let (x1, . . . , xn) and (y1, . . . , yn) be
canonical decompositions for x, y. Then, by Lemma 4.5,

f̄(x ∧ y) = f̄(
n∏

i=1

(xi ∧ yi))

=
n∏

i=1

f(xi ∧ yi)

=
n∏

i=1

(f(xi) ∧ f(yi))

= f̄(x) ∧ f̄(y),

where the last equality is given by Lemma 4.5, since f preserves canonical
decompositions. Thus f̄ preserves multiplication and meet, and hence it is a
residuated lattice homomorphism, by Lemma 4.9. 2
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Corollary 4.11 Under the hypothesis of the previous lemma, if f is an in-
jection, a surjection or an isomorphism, then so is f̄ .

PROOF. Assume that f is onto and let y ∈ L. There exist y1, . . . , yn ∈ Lγ2 ,
such that y = y1 · · · yn. Moreover, there exist x1, . . . , xn ∈ Kγ1 , such that
f(xi) = yi for all i. Then, f̄(x1 · · · xn) = f(x1) · · · f(xn) = y1 · · · yn = y.

Assume that f is injective. If (x1, . . . , xn), (y1, . . . , yn) are canonical decom-
positions for x, y and f̄(x) = f̄(y), namely f(x1) · · · f(xn) = f(y1) · · · f(yn)
then, by the preservation of the canonicity of the decomposition under f̄ , es-
tablished in the proof of the previous lemma, we get f(xi) = f(yi) for all i.
By the injectivity of f we get xi = yi, for all i, so x = y. 2

Theorem 4.12 The categories IGMV and LG−
∗ are equivalent.

PROOF. For an object 〈K, γ〉 of LG−
∗ , let Γ(〈K, γ〉) = Kγ; for a homomor-

phism f : 〈K, γ1〉 → 〈L, γ2〉, let Γ(f) be the restriction of f to Kγ1 .

By Corollary 3.5, Γ(〈K, γ〉) is an object in IGMV. Using the fact that f
commutes with the nuclei γ1 and γ2, it is easy to see that Γ(f) is a morphism
of IGMV. To check, for example, that it preserves multiplication, note that
Γ(f)(x ◦γ1 y) = f(γ1(xy)) = γ2(f(xy)) = γ2(f(x)f(y)) = f(x) ◦γ2 f(y).

Moreover, it is obvious that Γ(f ◦ g) = Γ(f) ◦Γ(g) and that Γ(idKγ1
) = idKγ2

.
Thus, Γ is a functor between the two categories.

By Theorem 3.12, Γ is onto the objects of IGMV and by Lemma 4.10, Γ is
full. Finally, Γ is faithful, because if two morphisms agree on a generating set,
they agree on the whole negative cone of the `-group. Thus, Γ is a categorical
equivalence between the two categories, by Theorem 1, page 93, of [23]. 2

In addition to IGMV and LG−
∗ , we also consider the following categories, the

definitions of which we organize in Table 1.

We first explain the notation that is used. A bounded GMV-algebra is a resid-
uated bounded-lattice whose 0-free reduct is a GMV-algebra; bounded GMV-
algebras are called pseudo-MV-algebras in [15]. It is easy to see that every
bounded GMV-algebra is integral. Bounded GMV-algebras form a variety,
which we denote by bIGMV . We denote the class of integral GMV-algebras
by IGMV , and the class of objects of the category LG−

∗ by LG−∗ . If K is a
class of algebras, we denote by H(K) the class of all homomorphisms between
the algebras of K; we denote the submonoid of a residuated lattice generated
by a set X by 〈X〉. The category K in the first column takes as values the
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K = IGMV LG−
∗ LG∗

K Obj IGMV 〈L, γ〉 ∈ LG−∗ (G, γ), G ∈ LG
L = 〈γ(L)〉 G− = 〈γ(G−)〉

γ is a nucleus on G−

Mor H(IGMV) H(LG−∗ ) f ∈ H(LG), f : G → H

f |G− ◦ γ = γ ◦ f |G−

bK Obj bIGMV 〈L, γu〉 ∈ LG−∗ (G, γu), G ∈ LG
u ∈ L = 〈γ(L)〉 u ∈ G− = 〈γu(G−)〉

γu is a nucleus on G−

Mor H(IGMV) H(LG−∗ ) f ∈ H(LG), f : G → H

f |G− ◦ γ = γ ◦ f |G−

Kb Obj IGMV 〈L, γ〉 ∈ LG−∗ (G, γ), G ∈ LG
L = 〈γ(L)〉 G− = 〈γ(G−)〉

γ is a nucleus on G−

Mor f ∈ H(IGMV) f ∈ H(LG−∗ ) f ∈ H(LG), f : G → H

f : M → N, f : K → L, f |G− ◦ γ = γ ◦ f |G−
↑ f [M ] = N ↑ f [K] = L ↑ f [G] = H

bKb Obj bIGMV 〈L, γu〉 ∈ LG−∗ (G, γu), G ∈ LG
u ∈ L = 〈γ(L)〉 u ∈ G− = 〈γu(G−)〉

γu is a nucleus on G−

Mor f ∈ H(IGMV) f ∈ H(LG−∗ ) f ∈ H(LG), f : G → H

f : M → N, f : K → L, f |G− ◦ γ = γ ◦ f |G−
↑ f [M ] = N ↑ f [K] = L ↑ f [G] = H

Table 1
Categorical equivalences.
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categories in the top row. For example, the last entry of the table describes
the category bLG∗b.

Note that the functor defining the equivalence of Theorem 4.12 specializes
to pairs of domain and range as described in (the first two columns of) the
last three rows of the table. Moreover, since the category of `-groups and the
category of their negative cones are equivalent, by [2], the categories LG−

∗ and
LG∗ are equivalent. Consequently, all three categories in the first row of the
table are equivalent. The same arguments apply to the last two columns of the
remaining three rows, so each of the four rows consists of a triple of equivalent
categories. The categorical equivalence of the last row is the one established
by A. Dvurečenskij in [10]. If we restrict further to the commutative case, we
obtain D. Mundici’s result in [24].

5 Decomposition of GBL-algebras

The primary objective of this section is to establish Theorem A (see Theo-
rem 5.6 below). Its proof is based on the decomposition result of Theorem 5.2.
We refer the reader to [22] for a comprehensive discussion of products of resid-
uated structures.

Lemma 5.1 GBL-algebras satisfy the identity x ≈ (x ∨ e)(x ∧ e).

PROOF. By Lemma 2.8, (e/x ∧ e)x = x ∧ e. Moreover, by Lemma 2.7(i),
x∨e is invertible and (x∨e)−1 = e/(x∨e) = e/x∧e. Thus, (x∨e)−1x = x∧e,
or x = (x ∨ e)(x ∧ e). 2

The following theorem shows that if L is a GBL-algebra then the sets G(L)
and I(L), given in definition 2.6, are subuniverses of L. We denote the corre-
sponding subalgebras by G(L) and I(L).

Theorem 5.2 Every GBL-algebra L decomposes into the direct sum G(L)⊕
I(L).

PROOF. We begin with a series of claims.

Claim 1: G(L) is a subuniverse of L.

Let x, y be invertible elements. It is clear that xy is invertible. Additionally,
for all x, y ∈ G(L) and z ∈ L, z ≤ x−1y ⇔ xz ≤ y ⇔ z ≤ x\y. It follows
that x\y = x−1y, hence x\y is invertible. Likewise, y/x = yx−1 is invertible.
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Moreover, x∨y = (xy−1∨e)y. So, x∨y is invertible, since every positive element
is invertible, by Lemma 2.7(i), and the product of two invertible elements is
invertible. By Lemma 2.1(iii), x ∧ y = e/(x−1 ∨ y−1), which is invertible,
since we have already shown that G(L) is closed under joins and the division
operations.

Claim 2: I(L) is a subuniverse of L.

Note that every integral element a is negative, since e = e/a implies e ≤ e/a
and a ≤ e. For x, y ∈ I(L), using Lemma 2.1 repeatedly, we get:

e/xy = (e/y)/x = e/x = e, so xy ∈ I(L).

e/(x ∨ y) = e/x ∧ e/y = e, so x ∨ y ∈ I(L).

e ≤ e/x ≤ e/(x ∧ y) ≤ e/xy = e, so x ∧ y ∈ I(L).

e = e/(e/y) ≤ e/(x/y) ≤ e/(x/e) = e/x = e, so x/y ∈ I(L).

Claim 3: For every g ∈ (G(L))− and every h ∈ I(L), g ∨ h = e.

Let g ∈ (G(L))− and h ∈ I(L). We have e/(g ∨ h) = e/g ∧ e/h = e/g ∧ e = e,
since e ≤ e/g. Moreover, g ≤ g∨h, so e ≤ g−1(g∨h). Thus, by the GBL-algebra
identities and Lemma 2.1

e = (e/[g−1(g ∨ h)])[g−1(g ∨ h)]

= ([e/(g ∨ h)]/g−1)g−1(g ∨ h)

= (e/g−1)g−1(g ∨ h)

= gg−1(g ∨ h)

= g ∨ h.

Claim 4: For every g ∈ (G(L))− and every h ∈ I(L), gh = g ∧ h.

In light of Lemma 5.1, g−1h = (g−1h∨ e)(g−1h∧ e). Multiplication by g yields
h = (h∨ g)(g−1h∧ e). Using Claim 3, we have gh = g(g−1h∧ e) = h∧ g, since
multiplication by an invertible element is an order automorphism.

Claim 5: For every g ∈ G(L) and every h ∈ I(L), gh = hg.

The statement is true if g ≤ e, by Claim 4. If g ≥ e then g−1 ≤ e, thus
g−1h = hg−1, hence hg = gh. For arbitrary g, note that both g ∨ e and
g ∧ e commute with h. Using Lemma 5.1, we get gh = (g ∨ e)(g ∧ e)h =
(g ∨ e)h(g ∧ e) = h(g ∨ e)(g ∧ e) = hg.
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Claim 6: For every x ∈ L, there exist gx ∈ G(L) and hx ∈ I(L), such that
x = gxhx.

By Lemma 5.1, x = (x ∨ e)(x ∧ e). Since e ≤ x ∨ e and e ≤ e/(x ∧ e), by
Lemma 2.7(i), these elements are invertible. Set gx = (x∨ e)(e/(x∧ e))−1 and
hx = (e/(x ∧ e))(x ∧ e). It is clear that x = gxhx, gx is invertible and hx is
integral.

Claim 7: For every g1, g2 ∈ G(L) and h1, h2 ∈ I(L), g1h1 ≤ g2h2 if and only if
g1 ≤ g2 and h1 ≤ h2.

For the non-trivial direction we have

g1h1 ≤ g2h2 ⇒ g−1
2 g1h1 ≤ h2 ⇒ g−1

2 g1 ≤ h2/h1 ≤ e ⇒ g1 ≤ g2.

Moreover,

g−1
2 g1 ≤ h2/h1 ⇒ e ≤ g−1

1 g2(h2/h1)

⇒ e = [e/g−1
1 g2(h2/h1)]g

−1
1 g2(h2/h1)

⇒ e = [(e/(h2/h1))/g
−1
1 g2]g

−1
1 g2(h2/h1)

⇒ e = g−1
2 g1g

−1
1 g2(h2/h1)

⇒ e = h2/h1

⇒ h1 ≤ h2.

By Claims 1 and 2, G(L) and I(L) are subalgebras of L. Define f : G(L) ×
I(L) → L by f(g, h) = gh. We will show that f is an isomorphism. It is
onto by Claim 6 and an order isomorphism by Claim 7. So, it is a lattice
isomorphism, as well. To verify that f preserves the other operations note
that gg′hh′ = ghg′h′, for all g, g′ ∈ G(L) and h, h′ ∈ I(L), by Claim 5.
Moreover, for all g, g′, ḡ ∈ G(L) and h, h′, h̄ ∈ I(L), ḡh̄ ≤ gh/g′h′ if and only
if ḡh̄g′h′ ≤ gh. By Claim 5, this is equivalent to ḡg′h̄h′ ≤ gh, and, by Claim 7,
to ḡg′ ≤ g and h̄h′ ≤ h. This is in turn equivalent to ḡ ≤ g/g′ and h̄ ≤ h/h′,
which is equivalent to ḡh̄ ≤ (g/g′)(h/h′) by Claim 7. Thus, for all g, g′ ∈ G(L)
and h, h′ ∈ I(L), gh/g′h′ = (g/g′)(h/h′) and, likewise, g′h′\gh = (g′\g)(h′\h).
2

Corollary 5.3 The varieties GBL and GMV decompose as follows:
GBL = LG×IGBL = LG∨IGBL and GMV = LG×IGMV = LG∨IGMV

Taking intersections with CanRL and recalling Theorem 2.12, we get:

Corollary 5.4 CanGMV = CanGBL = LG × LG−.
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Here we have set CanGMV = CanRL∩GMV and CanGBL = CanRL∩GBL.
Moreover, in conjunction with Lemma 2.13(iv) and Theorem 2.2, Corollary 5.3
yields:

Corollary 5.5 Every commutative GMV-algebra is representable.

By combining Theorem 5.2 and Theorem 3.12, we obtain the main result of
this section.

Theorem 5.6 A residuated lattice M is a GMV-algebra if and only if there
exist residuated lattices G,L, such that G is an `-group, L ∈ LG−, γ is a
nucleus on L and M = G ⊕ Lγ. Equivalently, M is a GMV-algebra if and
only if it has a direct product decomposition M ∼= G ×H−

γ , where G,H are
`-groups and γ is a nucleus on H−.

6 A categorical equivalence for GMV-algebras

The goal of this section is to establish Theorems D and E (see Theorems 6.6
and 6.9 below).

If G,H are `-groups and γ is a nucleus on H−, define δ(g, h) = (g, h ∧ e)
and γ′(g, h′) = (g, γ(h′)), for all g ∈ G, h ∈ H and h′ ∈ H−. It follows from
Theorem 5.6 that the underlying set of every GMV-algebra M is of the form
γ′(δ(G×H)), where G,H are `-groups and γ is a nucleus on H−.

Note that δ is an interior operator on L = G×H, i.e. it is contracting (δ(x) ≤
x, for all x ∈ L), monotone (if x ≤ y, then δ(x) ≤ δ(y), for all x, y ∈ L) and
idempotent (δ(δ(x)) = δ(x), for all x ∈ L). Moreover, its image Lδ = δ(L) is
a submonoid and a lattice ideal of L. More explicitly, we have δ(δ(x)δ(y)) =
δ(x)δ(y), δ(e) = e, δ(x)∧ y = δ(δ(x)∧ y) and δ(x)∨ δ(y) = δ(δ(x)∨ δ(y)), for
all x, y in L. We call an interior operator on a residuated lattice that satisfies
the above properties a kernel operator; note that the last equality follows from
the fact that δ is an interior operator and is not needed in the definition of a
kernel. A core operator on a residuated lattice L is the composition γ ◦ δ of a
kernel operator δ on L and a nucleus γ on the image Lδ of δ; see Lemma 6.1.

6.1 The object level: Representations of GMV-algebras

The main result of this subsection is Theorem D (see Theorem 6.6 below). En
route, we show that any core on a GMV-algebra has a unique representation
as the composition of a nucleus and a kernel operator.
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Lemma 6.1 If L is a residuated lattice and δ a kernel on it, then the algebra
Lδ = 〈δ(L),∧,∨, ·, \δ, /δ, e〉, where x/δy = δ(x/y) and x\δy = δ(x\y), is a
residuated lattice. Moreover, Lδ is a lattice ideal of L. If L is a GMV-algebra
or a GBL-algebra, then so is Lδ.

PROOF. Lδ is closed under join, since δ is an interior operator, and under
multiplication, by the first property of a kernel. Moreover, it contains e and it
is obviously closed under \δ and /δ. By the third property of a kernel and the
fact that it is closed under joins, Lδ is an ideal of L. So, Lδ is a submonoid
and a subsemilattice of L. Moreover, Lδ is residuated. For all x, y, z ∈ Lδ,
x ≤ z/δy is equivalent to x ≤ δ(x/y), which in turn is equivalent to x ≤ z/y,
since δ is contracting and x = δ(x).

If L is a GMV-algebra, then

(x ∨ y)\x = x\x ∧ y\x = e ∧ y\x ≤ e.

Since Lδ is an ideal that contains e, we have δ((x ∨ y)\x) = (x ∨ y)\x, for
x, y ∈ Lδ. So,

x/δ[(x ∨ y)\δx] = δ(x/δ((x ∨ y)\x)) = δ(x/((x ∨ y)\x)) = δ(x ∨ y) = x ∨ y.

Similarly, if L is a GBL-algebra, we have

((x ∧ y)/δy)y = δ((x ∧ y)/y)y = ((x ∧ y)/y)y = x ∧ y,

since (x ∧ y)/y ≤ e. 2

Note that the map δ on a residuated lattice L, defined by δ(x) = x ∧ e, is a
kernel on L and Lδ = L−.

For a class of algebras K we denote by n(K) and k(K) the class of all images
of nuclei and kernels, respectively, of members of K. We already know that
n(LG−) = IGMV , from Theorem 3.12, and GMV ⊆ n(k(LG)). We will show
that k(LG) = CanGMV and n(CanGMV) = GMV . Moreover, we will give
an alternative characterization of core operators. It follows from the lemma
below that n(LG) = LG and k(IGMV) = IGMV

Lemma 6.2

(i) The identity map is the only nucleus on an `-group.
(ii) The identity is the only kernel on an integral GMV-algebra.
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PROOF. i) Assume γ is a nucleus on the `-group G. Since G is a GMV-
algebra, we have e = γ(e) ∈ Gγ, by Theorem 3.4; hence G+ ⊆ Gγ. Moreover,
by Lemma 3.1, for every x ∈ G, e/x ∈ Gγ, that is, x−1 ∈ Gγ. Thus, Gγ = G.
Since a closure operator is uniquely defined by its image, γ is the identity on
G.

ii) Assume that δ is a kernel on an integral GMV-algebra M. By Lemma 6.1,
Mδ is an ideal of M . Moreover, e = δ(e) ∈ Mδ. So, Mδ = M and δ is the
identity map on M . 2

The following corollary describes the action of a kernel on a GMV-algebra
and shows that k(LG) ⊆ CanGMV . In what follows, we will use the term
`-subgroup for a subalgebra of a residuated lattice that happens to be an
`-group.

Corollary 6.3 If δ is a kernel on a GMV-algebra M, then there exist a GMV-
subalgebra N and an `-subgroup H of M, such that M = N⊕H and δ(nh) =
n(h∧ e), for all n ∈ N and h ∈ H. Thus, Mδ = N⊕H−. If M is an `-group,
then so is N.

PROOF. By Theorem 5.6, there exist `-groups G,L, and a nucleus γ on L−,
such that M = G ⊕ L−γ . The restrictions of δ on G and L−γ , also denoted by
δ, are kernels, because of the equational definition of a kernel.

First, note that δ(L−γ ) ⊆ L−γ and δ(G) ⊆ G. To verify this, observe that
the image of M under δ is an ideal of M, that contains the identity e, by
Lemma 6.1; hence the negative cone of M is fixed by δ. In particular, L−γ and
G− are fixed by δ. Consider an element x in G. We will show that δ(x) is also
in G. Let δ(x) = yk, where y ∈ G and k ∈ L−γ . Since yk = δ(x) ≤ x = xe,
we have y ≤ x. Both yk and e are fixed by δ, so the same holds for their join
(y ∨ e)(k ∨ e) = y ∨ e, since the image of δ is a lattice ideal. Likewise, y is
fixed by δ since y ≤ y ∨ e. The element δ(x) is the maximum element below x
fixed by δ; so y ≤ δ(x), since y ≤ x. On the other hand, δ(x) = yk ≤ y; hence
δ(x) = y ∈ G.

We will show that there exist `-subgroups K,H of G, such that G = K⊕H
and δ(kh) = k(h ∧ e), for all k ∈ K and h ∈ H. Observe that Gδ is a GMV-
algebra, by Lemma 6.1, so there are `-groups K,H and a nucleus γ on H−,
such that Gδ = K ⊕ H−

γ , by Theorem 5.6. Since K × H−
γ is isomorphic to

Gδ, the negative cones K− ×H−
γ and G−

δ are isomorphic. Moreover, we have
(Gδ)

− = G−, because Gδ is an ideal of G that contains e. The operations on
(Gδ)

− and G− agree, since the lattice and monoid operations on both algebras
are the restrictions to (Gδ)

− = G− of the operations on G. Additionally, for
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all z ∈ G, z ∧ e is the greatest element fixed under δ that is below z; so,
z ∧ e = δ(z) = δ(z) ∧ e, and for all x, y ∈ G−, x\(Gδ)−y = x\δy ∧ e =
δ(x\y) ∧ e = x\y ∧ e = x\G−y and likewise for right division. Consequently,
K−×H−

γ is isomorphic to G− via the map (k, h) 7→ kh; i.e., G− = K−⊕H−
γ .

Since H−
γ is a subalgebra of G− ∈ LG−, we have H−

γ ∈ LG−. For simplicity
of the presentation, and without loss of generality, we assume that H is such
that γ is the identity on H−. So, G− = K− ⊕ H− = (K ⊕ H)− and G is
isomorphic to K⊕H. We simplify notation by identifying isomorphic algebras,
so G = K⊕H.

We have shown that (K ⊕ H)δ = K ⊕ H−. Thus, δ(K ⊕ H) = δ′(K ⊕ H),
where δ′(gh) = g(h ∧ e) is a interior operator. Since an interior operator is
defined by its image, we get δ(gh) = g(h∧e). So M = K⊕H⊕L−γ . Moreover,
δ is the identity on L−γ . If we set N = K ⊕ L−γ , we get M = N ⊕ H and
δ(nh) = n(h ∧ e), for all n ∈ N and h ∈ H. 2

Definition 6.4

(i) If δ is a map on a residuated lattice L and γ a map on δ(L), define the
map β(γ,δ) on L by β(γ,δ)(x) = γ(δ(x)).

(ii) If β is a map on a residuated lattice L, define the maps δβ on L and γβ

on δβ(L) by δβ(x) = β(x) ∧ x and γβ(x) = β(x).

Lemma 6.5 Let L be a GMV-algebra. If δ is a kernel on L and γ a nucleus
on Lδ, then δβ(γ,δ)

= δ, γβ(γ,δ)
= γ.

PROOF. We have δβ(γ,δ)
(x) = β(γ,δ)(x) ∧ x = γ(δ(x)) ∧ x. In view of Corol-

lary 6.3, to show that δβ(γ,δ)
= δ, it will suffice to verify that γ(δ(x)) ∧ x

= δ(x), only for the cases δ(x) = x and δ(x) = x ∧ e. In the first case, the
equation holds, because γ is extensive. In the second case, the equation reduces
to γ(x∧e)∧x = x∧e. Since γ is extensive, we have x∧e = x∧e∧x ≤ γ(x∧e)∧x.
Invoking the monotonicity of γ we get γ(x ∧ e) ∧ x ≤ γ(e) ∧ x = e ∧ x, by
Theorem 3.4(iii).

For every x in the range of δβ(γ,δ)
= δ, namely for x = δ(x), we have γβ(γ,δ)

(x) =
β(γ,δ)(x) = γ(δ(x)) = γ(x). 2

Therefore cores on GMV-algebras decompose uniquely as compositions of ker-
nels and nuclei. For a GMV-algebra L and a core β on it, define Lβ = (Lδβ

)γβ
.

Theorem 6.6 A residuated lattice L is a GMV-algebra if and only if L ∼= Gβ,
for some `-group G and some core β on G.

35



PROOF. By Lemma 6.1, if G is an `-group and δ a kernel on it, then Gδ is
a GMV-algebra. Moreover, by Theorem 3.4, (Gδ)γ is a GMV-algebra, as well.

Conversely, let L be a GMV-algebra. By Corollary 5.6, L ∼= K×H−
γ , for some

`-groups K and H, and a nucleus γ on H−. Define a map δ on K × H, by
δ(k, h) = (k, h∧ e). We will show that δ is a kernel. It is obviously an interior
operator and δ(e, e) = (e, e). Note that

δ(k, h)δ(k′, h′) = (k, h ∧ e)(k′, h′ ∧ e)

= (kk′, (h ∧ e)(h′ ∧ e))

= (kk′, hh′ ∧ h ∧ h′ ∧ e)

and δ(kk′, hh′ ∧ h ∧ h′ ∧ e) = (kk′, hh′ ∧ h ∧ h′ ∧ e). Similarly

δ(k, h) ∧ (k′, h′) = (k, h ∧ e) ∧ (k′, h) = (k ∧ k′, h ∧ e ∧ h′)

and δ(k ∧ k′, h ∧ e ∧ h′) = (k ∧ k′, h ∧ e ∧ h′).

Note that the underlying set of (K ×H)δ is K × H−. Define γ̄ on K × H−,
by γ̄(k, h) = (k, γ(h)). We will show that γ̄ is a nucleus on (K × H)δ. It is
obviously a closure operator. Moreover,

γ̄(k, h)γ̄(k′, h′) = (k, γ(h))(k′, γ(h′))

= (kk′, γ(h)γ(h′))

≤ (kk′, γ(hh′))

= γ̄(kk′, hh′)

= γ̄((k, h)(k′, h′)).

We have γ̄((K×H)δ) = γ̄(K×H−) = K×H−
γ . So K×H−

γ and ((K×H)δ)γ̄ have
the same underlying set. Recalling the definitions of the image of a residuated
lattice under a kernel and under a nucleus, we see that the lattice operations
on the two algebras coincide. To show that the other operations coincide, note
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that for all (k, h), (k′h′) ∈ K ×H−
γ ,

(k, h) ◦((K×H)δ)γ̄ (k′, h′) = (k, h) ◦γ̄ (k′, h′)

= γ̄((k, h) · (k′, h′))
= γ̄(kk′, hh′)

= (kk′, γ(hh′))

= (kk′, h ◦γ h′)

= (k, h) ◦K×H−
γ

(k′, h′)

(k, h)\((K×H)δ)γ̄ (k
′, h′) = δ((k, h)\K×H(k′, h′))

= δ((k\Kk′, h\Hh′))

= (k\Kk′, h\Hh′ ∧ e)

= (k\Kk′, h\H−h′)

= (k\Kk′, h\H−
γ
h′)

= (k, h)\K×H−
γ
(k′, h′)

The proof for the other division operation is analogous. 2

It follows from the preceding theorem that k(n(LG)) = GMV . We show below
that k(LG) = CanGMV and n(CanGMV) = GMV . Further, we provide an
equational description for a core operator.

Corollary 6.7

(i) A residuated lattice L is a cancellative GMV-algebra if and only if L ∼=
Gδ, for some `-group G and some kernel δ on G.

(ii) A residuated lattice L is a GMV-algebra if and only if L ∼= Kγ, for some
cancellative GMV-algebra K and some nucleus γ on K.

PROOF. i) One direction follows from Corollary 6.3 and Corollary 5.4. For
the other direction, assume that L is a cancellative GMV-algebra. By Corol-
lary 5.4, L = K × H−, for some `-groups K,H. We have already remarked
that the map δ on K×H, defined by δ(k, h) = (k, h∧ e), is a kernel and that
(K×H)δ = K×H− = L.

ii) One direction follows from Theorem 3.4. Conversely, if L is a GMV-algebra,
then, by Theorem 5.6, there exist `-groups G,H and a nucleus γ on H−, such
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that L = G×H−
γ . It is easy to check that the map γ̄ on G×H−, defined by

γ̄(g, h) = (g, γ(h)), is a nucleus and that (G×H−)γ̄ = G×H−
γ = L. Finally,

K = G×H− is a cancellative GMV-algebra, by Corollary 5.4. 2

Lemma 6.8 A map β on a GMV-algebra L is a core if and only if it is
monotone, idempotent and satisfies the following properties:

(i) β(x)β(y) ≤ β(xy),
(ii) β(e) = e,
(iii) (β(x) ∧ x)(β(y) ∧ y) ≤ β((β(x) ∧ x)(β(y) ∧ y)),
(iv) β(x) ∧ x ∧ y ≤ β(β(x) ∧ x ∧ y)
(v) β(β(x) ∧ x) = β(x).

PROOF. The result is a consequence of the following two claims and Lemma 6.5.

Claim 1: If β is a monotone, idempotent map on L that satisfies the properties
above, then δβ is a kernel on L, γβ is a nucleus on Lδβ

and β(γβ ,δβ) = β.

Since γβ is the restriction of β, we have γβ(x)γβ(y) ≤ γβ(xy), by the first
property. Moreover, γβ is monotone and idempotent, being a restriction of β.
It is also extensive on Lδβ

because δβ(x) = β(x)∧x ≤ β(β(x)∧x) = γβ(δβ(x)),
by (iv). Thus, γβ is a nucleus.

Obviously, δβ(e) = β(e) ∧ e = e, by the second property. The remaining two
properties of a kernel state that δβ(x)δβ(y) and δβ(x) ∧ y are elements fixed
by δβ. It is easy to see that for every x, δβ(x) = x if and only if x ≤ β(x).
So, the remaining properties are equivalent to properties (iii) and (iv) of the
lemma. Additionally, δβ is an interior operator, since δβ(x) = β(x) ∧ x ≤ x;
δβ(δβ(x)) = β(β(x) ∧ x) ∧ x = β(x) ∧ x = δβ(x), by (v); and if x ≤ y, then
δβ(x) = β(x) ∧ x ≤ β(y) ∧ y = δβ(y). Thus, δβ is a kernel.

Finally, β(γβ ,δβ)(x) = γβ(δβ(x)) = β(β(x) ∧ x) = β(x).

Claim 2: If δ is a kernel on L and γ a nucleus on Lδ, then the map β(γ,δ) is
monotone, idempotent and it satisfies the properties in the statement of the
lemma.

For the first property we have

β(x)β(y) = γ(δ(x))γ(δ(y)) ≤ γ(δ(x)δ(y))

= γ(δ(δ(x)δ(y))) ≤ γ(δ(xy))

= β(xy).

Also, β(e) = γ(δ(e)) = γ(e) = e, by Theorem 3.4(iii).
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Since for every x, x ≤ β(γ,δ)(x) if and only if δβ(γ,δ)
(x) = x, properties (iii) and

(iv) hold for β(γ,δ) if and only if the corresponding properties of a kernel hold
for δβ(γ,δ)

. This is actually the case, since δβ(γ,δ)
= δ, by Lemma 6.5.

The last property for β(γ,δ) is equivalent to β(γ,δ)(δβ(γ,δ)
(x)) = β(γ,δ)(x), that is,

β(γ,δ)(δ(x)) = β(γ,δ)(x), which follows from the idempotency of δ. 2

6.2 The morphism level

Let GMV be the category with objects GMV-algebras and morphisms resid-
uated lattice homomorphisms. Also, let LG∗ be the category with objects
algebras 〈G, β〉 such that G is an `-group and β is a core on G whose image
generates G; let the morphisms of this category be homomorphisms between
these algebras.

Theorem 6.9 The categories GMV and LG∗ are equivalent.

PROOF. For an object 〈G, β〉 of LG∗, define Γ(〈G, β〉) = Gβ. For a mor-
phism f of LG∗ with domain 〈G, β〉, define Γ(f) to be the restriction of f to
Gβ.

Let δ = δβ and γ = γβ. By Lemma 6.1 and Theorem 3.4, the algebra
Γ(〈G, β〉) is an object of GMV. Actually, it can be easily seen that Gβ =
〈(Gδ)γ,∧,∨, ◦γ, \δ, /δ, e〉. To show that Γ(f) is a morphism of GMV, we use
the fact that f commutes with β – we use the same symbol for the cores in
the domain and in the codomain.

First note that f commutes with δ on L and γ on δ(L). Indeed, by Lemma 6.5,

δ(f(x)) = β(f(x)) ∧ f(x) = f(β(x)) ∧ f(x)

= f(β(x) ∧ x) = f(δ(x)).

Moreover, γ(f(x)) = γ(δ(f(x))) = f(γ(δ(x))) = f(γ(x)). In particular, if
x = β(x), then x = γ(x) = δ(x) and f(x) = δ(f(x)) = γ(f(x)).

We can now show that f preserves multiplication. For x, y ∈ β(G), x = δ(x) =
γ(x) and y = δ(y) = γ(y), so

δ(xy) = δ(δ(x)δ(y)) = δ(x)δ(y) = xy.
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Thus,

f(x ◦γ y) = f(γ(xy)) = γ(f(xy))

= γ(f(x)f(y)) = f(x) ◦γ f(y).

Additionally,

f(x/δy) = f(δ(x/y)) = δ(f(x/y))

= δ(f(x)/f(y)) = f(x)/δf(y).

The proof for the other division is analogous. Γ(f) preserves the lattice oper-
ations, because they are restrictions of the lattice operations of the `-group,
so Γ(f) is a homomorphism.

By Theorem 6.6, Γ is onto the objects of GMV. Moreover, Γ is faithful,
because if two morphisms agree on a generating set, they agree on the whole
`-group.

To see that Γ is full, let g : M → N, be a morphism in GMV. By Theorem 5.6,
there exist `-groups K,H,K,H and nuclei γ on H− and γ on H

−
, such that

M = K × H−
γ and N = K × H

−
γ . Moreover, by the proof of Theorem 6.6,

there exist kernels δ on K × H, δ on K × H, and nuclei γ′ on (K × H)δ

and γ′ on (K × H)δ, such that δ(k, h) = (k, h ∧ e), δ(k, h) = (k, h ∧ e),
γ′(k, h) = (k, γ(h)) and γ′(k, h) = (k, γ(h)), for h ∈ H, h ∈ H, k ∈ K and
k ∈ K. For the cores β = γ′ ◦ δ and β = γ′ ◦ δ, there exist homomorphisms
g1 : K → K and g2 : H−

γ1
→ H

−
γ2

such that g = (g1, g2); the reason for this is
that invertible and integral elements are preserved under homomorphisms. By
Theorem 4.10, there exists a homomorphism f−2 : H− → H

−
that extends g2

and commutes with the γ’s. By the results in [2], there exists a homomorphism
f2 : H → H that extends f−2 . Let f : 〈K×H, β〉 → 〈K×H, β〉 be defined by
f = (g1, f2). It is clear that Γ(f) = g. We will show that g(β(x)) = β(f(x)).
Let (k, h) ∈ K ×H.

g(β(k, h)) = g(γ(δ(k, h))) = g(k, γ(h ∧ e))

= (g1(k), g2(γ(h ∧ e))) = (g1(k), γ(f−2 (h ∧ e)))

= (g1(k), γ(f2(h) ∧ e)) = γ′(g1(k), f2(h) ∧ e)

= γ(δ((g1(k), f2(h)))) = β(f(k, h)).

Thus, by [23] (Theorem 1, page 93), Γ is an equivalence between the two
categories. 2
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7 Decidability of the equational theories

In this section, we obtain the decidability of the equational theories of the vari-
eties IGMV and GMV as an easy application of the representation theorems
established in the previous sections.

For a residuated lattice term t and a variable z 6∈ V ar(t), we define the term
tz inductively on the complexity of a term, by

xz = x ∨ z ez = e

(s ∨ r)z = sz ∨ rz (s ∧ r)z = sz ∧ rz

(s/r)z = sz/rz (s\r)z = sz\rz (sr)z = szrz ∨ z,

for every variable x and every pair of terms s, r.

For a term t and an algebra L, we write tL for the term operation on L induced
by t.

For a residuated lattice term t, a residuated lattice L and a map γ on L, we
define the operation tγ on L, of arity equal to that of t, by

xγ = γ(xL) eγ = eL

(s ∨ r)γ = sγ ∨ rγ (s ∧ r)γ = sγ ∧ rγ

(s/r)γ = sγ/rγ (s\r)γ = sγ\rγ (sr)γ = γ(sγrγ),

for every variable x and every pair of terms s, r.

Note that tγ is obtained from tL by replacing every product sr by γ(sr) and
every variable x by γ(x); tz is obtained from t by replacing every product sr
by sr ∨ z and every variable x by x ∨ z. We extend the above definitions to
every residuated lattice identity ε = (t ≈ s) by εz = (tz ≈ sz), for a variable z
that does not occur in ε. Moreover, we define εγ(ā) = (tγ(ā) = sγ(ā)), where
ā is an element of an appropriate power of L.

Proposition 7.1 An identity ε holds in IGMV if and only if the identity εz

holds in LG−, where z 6∈ V ar(ε).

PROOF. We prove the contrapositive of the lemma. Let ε be an identity that
fails in IGMV . Then there exists an integral GMV-algebra M, and an element
ā in an appropriate power, n, of M , such that ε(ā) is false. By Theorem 3.12,
there exists an L ∈ LG− and a nucleus γ on L such that M = Lγ. By the
definition of Lγ, it follows that εγ(ā) does not hold in L. Let p be the meet of all
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products tγ(ā)sγ(ā), where t, s range over all subterms of ε and u = γ(p). By
Lemma 3.6, γ and γu agree on the principal filter of p. Since the arguments of
all occurrences of γ in εγ(ā) are of the form tγ(ā)sγ(ā), where t, s are subterms
of ε, and tγ(ā)sγ(ā) are in the principal filter of p, we can replace, working
inductively inwards, all occurrences of γ in εγ(ā) by γu. Hence εγu(ā) = εγ(ā)
and εγu(ā) fails in L. Moreover, εγu(ā) = (εz)

L(ā, u). Thus εz fails in L and εz

is not a valid identity of LG−.

Conversely, if εz, fails in LG−, there exist an L ∈ LG−, ā in an appropriate
power, n, of L and u ∈ L such that (εz)

L(ā, u) is false. Obviously, γu is a
nucleus on L, so Lγu is an integral GMV-algebra. Let b̄ be the element of
Ln, defined by b̄(i) = ā(i) ∨ u, for all i ∈ {1, . . . , n}. Note that (εz)

L(ā, u) =
εγu(ā) = εγu(b̄) = εLγu (b̄) and u, b̄(i) ∈ Lγu , for all i ∈ {1, . . . , n}. So ε fails in
Lγu and hence in IGMV . 2

In view of Theorem 5.6 we have the following corollary.

Corollary 7.2 An identity ε holds in GMV if and only if ε holds in LG and
εz holds in LG−, where z 6∈ V ar(ε).

The variety of `-groups has a decidable equational theory by [19]. Based on
this fact, it is shown in [2] that the same holds for LG−. So, we obtain the
following result.

Theorem 7.3 The varieties IGMV and GMV have decidable equational the-
ories.

Recall that a bounded GMV-algebra (also called a pseudo MV-algebra) is
an expansion of a GMV-algebra by a constant 0 that satisfies the identity
x∧0 ≈ 0. We denote the variety of all bounded GMV-algebras by bGMV . Note
that every bounded GMV-algebra is integral, as a consequence of Theorem 5.6.

For a term t in the language of residuated bounded-lattices and a variable
z 6∈ V ar(t), we define the term tz inductively on the complexity of a term, by

xz = x ∨ z ez = e 0z = z

(s ∨ r)z = sz ∨ rz (s ∧ r)z = sz ∧ rz

(s/r)z = sz/rz (s\r)z = sz\rz (sr)z = szrz ∨ z,

for every variable x and every pair of terms s, r. We use the same notation
εz as before, since the two definitions agree if the equation ε does not contain
any occurrences of the constant 0.

Minor modifications in the proof of Proposition 7.1 yield the following result.
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Proposition 7.4 An identity ε holds in bGMV if and only if the identity εz

holds in LG−, where z 6∈ V ar(ε).

A careful analysis of the construction of an algebra in LG− from an integral
GMV-algebra shows that if the latter is commutative then so is the former.
The same result is shown in [24]. So, the proof of Proposition 7.1 also shows
the following.

Proposition 7.5 An identity ε holds in MV if and only if the identity εz

holds in LG−, where z 6∈ V ar(ε).

Consequently, we have the following result.

Theorem 7.6 The varieties of of MV-algebras and bounded GMV-algebras
have decidable equational theories.
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