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Abstract

A residuated lattice is an ordered algebraic structure

L = 〈L,∧,∨, · , e, \ , / 〉

such that 〈L,∧,∨〉 is a lattice, 〈L, ·, e〉 is a monoid, and \ and / are
binary operations for which the equivalences

a · b ≤ c ⇐⇒ a ≤ c/b ⇐⇒ b ≤ a\c

hold for all a, b, c ∈ L. It is helpful to think of the last two operations
as left and right division and thus the equivalences can be seen as “di-
viding” on the right by b and “dividing” on the left by a. The class of
all residuated lattices is denoted by RL.

The study of such objects originated in the context of the theory of
ring ideals in the 1930’s. The collection of all two-sided ideals of a ring
forms a lattice upon which one can impose a natural monoid structure
making this object into a residuated lattice. Such ideas were investi-
gated by Morgan Ward and R. P. Dilworth in a series of important
papers [15], [16],[45], [46], [47] and [48] and also by Krull in [33]. Since
that time, there has been substantial research regarding some specific
classes of residuated structures, see for example [1], [9], [26] and [38],
but we believe that this is the first time that a general structural the-
ory has been established for the class RL as a whole. In particular,
we develop the notion of a normal subalgebra and show that RL is an
“ideal variety” in the sense that it is an equational class in which con-
gruences correspond to “normal” subalgebras in the same way that ring
congruences correspond to ring ideals. As an application of the general
theory, we produce an equational basis for the important subvariety
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RLC that is generated by all residuated chains. In the process, we find
that this subclass has some remarkable structural properties that we
believe could lead to some important decomposition theorems for its
finite members (along the lines of the decompositions provided in [27]).

1 Introduction

Our aim in this paper is to lay the groundwork for, and provide some significant
initial contributions to, the development of a comprehensive theory on the
structure of residuated lattices – a class of algebraic structures that we shall
denote RL. We believe that such a theory, whether in part or in whole, is not
only fascinating in its own right, but also establishes a common framework
within which researchers from a host of diverse disciplines can find tools and
models applicable to their own areas.

The defining properties that describe the class RL are few and easy to
quickly grasp. Moreover, one can readily construct concrete examples that
illustrate the key features of such structures. However, the theory is also
sufficiently robust that the class of residuated lattices encompasses a surprising
number of topics from subjects as disparate as ℓ-groups, algebraic logic, and
some areas of theoretical computer science. Even the objects constructed by
Prenowitz [42] and others in their algebraic treatment of Euclidean geometry
give rise to special types of residuated structures. We show in a few special
instances that we are able to take guidance from some of these areas and
generalize known results in their realm to the entire class RL.

It is easy to see that the equivalences which define residuation can be
captured by equations and thus RL is a finitely based variety. In order to
emphasize the large number of important classes that are contained within
RL, we give below in Figure 1 a partial sketch of its lattice of subvarieties –
henceforth denoted L(RL). The line segments in the diagram are intended to
convey the relative positions of the indicated subclasses and we do not mean
to imply that this fragment is a sublattice of L(RL).

Here, RLC denotes the subvariety of RL generated by all residuated chains,
Br the variety of Brouwerian (or Heyting) algebras (in the sense of Köhler [32]),
RSA the variety of relative Stone algebras and BA the variety of generalized
Boolean algebras (that is, relatively complemented, distributive lattices with
a greatest element). Following the notational conventions of [1], LG is the
variety of all lattice-ordered groups (ℓ-groups), R is the variety of representable
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Figure 1: A fragment of the subvariety lattice of RL

ℓ-groups and A is the variety of all Abelian ℓ-groups. Of course, we are being
lax with regard to the similarity types of these various varieties. Thus by
Br, for example, we mean the subvariety of RL generated by the additional
equation xy ≈ x∧ y, and by RSA we mean the subvariety of Br generated by
the equation (x\y) ∨ (y\x) = e. Similarly, the other classes are equationally
defined subvarieties in the language of RL; the point is that each of these is
term-equivalent to its namesake variety and thus we feel justified in using the
same cognomen without danger of confusion. In several of these subvarieties
the right and left division operations correspond to already familiar notions.
For example, the members of Br (which are the models of intuitionistic logic)
all satisfy the equation y/x = x\y and this common value is usually denoted
by x → y, where → is the so-called Heyting arrow.

While previous research by others has thoroughly described in detail several
particular classes of residuated structures, we present here a number of general
results that hold throughout the variety RL. We conclude our introduction
with a brief outline of those results.

For L ∈ RL and fixed a ∈ L we define the notion of right and left con-
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jugation by a: λa(x) := [a\(xa)] ∧ e and ρa(x) := [(ax)/a] ∧ e respectively
(the factor ∧e appears for essentially technical reasons). These are unary op-
erations on the universe of L that correspond to the analogous concepts from
group theory. A subalgebra of L is called normal if it is closed with respect to
all conjugations and it is said to be convex if it is order-convex with respect
to the lattice ordering on L. We let CN (L) denote the collection of all convex
normal subalgebras of L and in Section 4 we establish that RL is an ideal
variety:

Theorem 4.12 For any L ∈ RL, Con(L)
∼
= CN (L).

In section 6 we give an explicit basis for the subvariety, RLC , namely:

Theorem 6.7 RLC = ModRL[ε1 ∧ ε2] where ε1 and ε2 are the equations

ε1: (x ∨ y) ∧ e = (x ∧ e) ∨ (y ∧ e).

ε2: λz[x/(x ∨ y)] ∨ ρw[y/(x ∨ y)] = e.

In the process of establishing these two theorems we provide element-wise
descriptions of convex normal subalgebras and submonoids generated by arbi-
trary subsets. Finally, we investigate some further properties of the subvariety
RLC – a class that we believe is particularly interesting for several reasons. For
example, it follows from the work of Tsinakis and Hart [27] that for L ∈ RLC ,
the compact elements of Con(L) form a relatively normal lattice.

2 Preliminaries

We presume that the reader is familiar with the basic facts, definitions and
terminology from universal algebra and lattice theory. In particular, the no-
tions of posets, lattices, and general algebras are central to this paper as
are the concepts of congruences, and homomorphisms. For an introduc-
tion to universal algebra and general algebraic systems, the reader may wish
to consult [8] or [36] while any of [3], [5], [13], [23], or [24] would serve as
a suitable lattice theory reference. Several of the results in this paper were
motivated by analogous ideas in the theory of lattice-ordered groups and the
reader interested in this topic may wish to see [1], [21], or [22].

If P is a poset, X ⊆ P and p ∈ P then we use the following notational
conventions:
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The principal downset of p in P is the set

↓p := {x ∈ P | x ≤ p}.

The downset generated by X in P is the set

↓X := {p ∈ P | p ≤ x for some x ∈ X}.

A set X is called a downset or order ideal of P if ↓X = X.

The dual of a poset P is the poset P∂ whose underlying set is the set P
and whose ordering is just the opposite of that in P. We also have the dual
notions of those listed above, defined in the obvious ways:

The principal upset of p in P, denoted ↑p, is the set ↓p of P∂.

The upset generated by X in P, denoted ↑X, is the set ↓X of P∂ .

A set X is called an upset or order filter of P if ↑X = X.

We shall denote the bottom element of a poset P, if it exists, by 0P.
Similarly, ⊤P denotes the top element. Obviously, bottom elements and top
elements, when they exist, are unique. Let X ⊆ P be any subset (possibly
empty). We will use

∨

P X and
∧

P X, respectively, to denote the supremum

(or least upper bound) and infimum (or greatest lower bound) of X in P

whenever they exist. We will use the terms monotone, isotone, and order-

preserving synonymously to describe a map f: P → Q between posets P and
Q with the property that for all p1, p2 ∈ P , if p1 ≤ p2 then f(p1) ≤ f(p2). If for
all p1, p2 ∈ P , p1 ≤ p2 ⇒ f(p1) ≥ f(p2), then f will be called anti-isotone

or order-reversing. The poset subscripts appearing in some of the notation
of this paragraph will henceforth be omitted whenever there is no danger of
confusion.

3 Residuated lattices

Let P be a poset and · : P × P → P be a binary map. We say that · is
residuated provided there exist binary maps \: P × P → P and /: P × P → P
such that

x · y ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z,
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for all x, y, z ∈ P . The maps \ and / are called the residuals of ·. Note
that a binary operation is residuated if and only if it is order preserving in
both variables and for all a, b ∈ P , the sets {p ∈ P | ap ≤ b} and {p ∈
P | pa ≤ b} both contain largest elements. As a consequence of the general
theory of adjunctions (see [19]), multiplication preserves all existing joins in
each argument. Moreover, the residual operations preserve all existing meets
in the “numerator” and convert all existing joins in the “denominator” to
meets. See Lemma 3.2 below.

Definition 3.1 A residuated lattice-ordered monoid, or a residuated

lattice for short, is an algebraic system

L = 〈L,∧,∨, ·, e, \, /〉

such that 〈L,∧,∨〉 is a lattice; 〈L, ·, e〉 is a monoid; and 〈\, /〉 are the residuals
of · in the lattice order.

We will use the symbol RL to denote the class of all residuated lattices. Note
that some authors omit the constant e from the definition and refer to those
residuated lattices with unit as unital. Also, we adopt the usual convention
of representing the monoid operation by juxtaposition, writing ab for a · b.

The following lemma collects numerous basic properties of residuated lat-
tices, most of which by now can be ascribed to the subject’s “folklore”. Notice
that items 2 and 3 imply that the division operations are isotone in the numer-
ator and anti-isotone in the denominator. We leave the proofs to the reader
since they are routine.

Lemma 3.2 Let L be a residuated lattice. For all a, b, c ∈ L, and any Y ⊆ L,
we have:

1. (a) a(b ∨ c) = ab ∨ ac and

(b ∨ c)a = ba ∨ ca.

(b) If
∨

Y exists, then

a
(

∨

Y
)

=
∨

{ay | y ∈ Y } and

(

∨

Y
)

a =
∨

{ya | y ∈ Y }.
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2. (a) (a ∧ b)/c = (a/c) ∧ (b/c) and c\(a ∧ b) = (c\a) ∧ (c\b).

(b) If
∧

Y exists, then

(

∧

Y
)

/c =
∧

{y/c | y ∈ Y } and

c\
(

∧

Y
)

=
∧

{c\y | y ∈ Y }.

3. (a) a/(b ∨ c) = (a/b) ∧ (a/c) and (b ∨ c)\a = (b\a) ∧ (c\a).

(b) If
∨

Y exists, then

a/
(

∨

Y
)

=
∧

{a/y | y ∈ Y } and

(

∨

Y
)

\a =
∧

{y\a | y ∈ Y }.

4. (a/c)c ≤ a and c(c\a) ≤ a.

5. a(c/b) ≤ ac/b and (a\c)b ≤ a\cb.

6. (c/b)(b/a) ≤ c/a and (a\b)(b\c) ≤ a\c.

7. c/b ≤ (c/a)/(b/a) and b\c ≤ (a\b)\(a\c).

8. b/a ≤ (c/b)\(c/a) and a\b ≤ (a\c)/(b\c).

9. c/b ≤ ca/ba and a\c ≤ ba\bc

10. (c/a)/b = c/ba and b\(a\c) = ab\c.

11. a\(c/b) = (a\c)/b.

12. c ≤ (a/c)\a and c ≤ a/(c\a).

13. a/e = a and e\a = a.

14. a/a ≥ e and a\a ≥ e.

15. (a/b)(e/c) ≤ a/cb and (c\e)(b\a) ≤ bc\a.

16. (a/a)a = a and a(a\a) = a.

17. (a/a)2 = a/a and (a\a)2 = a\a.
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18. If L has a bottom element, 0, then L also has a top element, ⊤, and for
all a ∈ L we have:

(a) a0 = 0a = 0.

(b) a/0 = 0\a = ⊤.

(c) ⊤/a = a\⊤ = ⊤.

4 The class RL is an ideal variety

By an ideal variety we mean an equational class of algebras with the prop-
erty that for each member A, the congruences of A correspond to certain
subalgebras of A. The meaning of this term will be clarified throughout the
remainder of the paper; for a precise definition see [25] or [44]. We begin by
showing the well-known fact that RL is indeed an equational class.

Proposition 4.1 The class RL is a finitely based equational class. In partic-
ular, RL = Mod(Σ) where Σ consists of the defining equations for lattices and
monoids together with the six equations given below:

a ≤ (ab ∨ c)/b b ≤ a\(ab ∨ c)
a(b ∨ c) = ab ∨ ac (b ∨ c)a = ba ∨ ca
(a/b)b ≤ a b(b\a) ≤ a

proof: Suppose L ∈ RL. Then for any a, b, c ∈ L,

(ab ∨ c)/b ≥ ab/b ≥ a(b/b) ≥ a

so that L satisfies the first equation above. That L satisfies both a(b ∨ c) =
ab ∨ ac and (a/b)b ≤ a follows from Lemma 3.2. The three dual equations
are proved to hold in a similar manner. Now suppose L is an algebra in
the language of residuated lattices and L |= Σ. Then we have that L is a
lattice with respect to the meet and join symbols and a monoid under the
multiplication symbol with unit equal to the constant symbol. It only remains
to prove that L satisfies the equivalences

ab ≤ c ⇐⇒ b ≤ a\c ⇐⇒ a ≤ c/b.

Suppose then that ab ≤ c. From a ≤ (ab ∨ c)/b we deduce that a ≤ c/b.
Conversely, suppose that a ≤ c/b. From a(b ∨ c) = ab ∨ ac we see that
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multiplication preserves order so that ab ≤ (c/b)b. Finally (a/b)b ≤ a gives us
the desired conclusion. The other equivalence is proved similarly.

Definition 4.2 If L is a residuated lattice, the set L
−

:= {a ∈ L | a ≤ e} is
called the negative cone of L.

Note that the negative cone is a submonoid of 〈L, ·, e〉. As such, we will denote

it by L
−

.

Definition 4.3 Let L ∈ RL. For each a ∈ L, define ρa(x) = (ax/a) ∧ e and
λa(x) = (a\xa) ∧ e. We refer to ρa and λa respectively as right and left

conjugation by a.

Let P = {ρa | a ∈ L}, Λ = {λa | a ∈ L} and set

Γ = {γ | ∃n, and ∃γj ∈ (P ∪ Λ) so that γ = γ1◦γ2◦. . .◦γn} .

We will call each γ ∈ Γ an iterated conjugation map.

Definition 4.4 A subset X ⊆ L is called convex if for any x, y ∈ X and
a ∈ L, x ≤ a ≤ y ⇒ a ∈ X; X is called normal if X closed with respect to
all ρ ∈ P and λ ∈ Λ.

Note that a subset is normal if and only if it is closed with respect to all γ ∈ Γ.

Definition 4.5 Let L be a residuated lattice. For a, b ∈ L define [a, b]r =
(ab/ba) ∧ e and [a, b]l = (ba\ab) ∧ e. We call [a, b]r and [a, b]l respectively the
right and left commutators of a with b.

We will say that a subset X is closed with respect to commutators if for any
a ∈ L and x ∈ X, the commutators [a, x]r and [x, a]l both lie in X. Normality
and “closure with respect to commutators” are identical properties for certain
“nice” subsets as we show in the next two lemmas.

Lemma 4.6 Let H be a convex subalgebra of L. Then H is normal if and
only if H is closed with respect to commutators.
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proof: Suppose H is normal. Then

e ≥ [a, h]r = (ah/ha) ∧ e = ((ah/a)/h) ∧ e ≥

(((ah/a) ∧ e)/h) ∧ e = (ρa(h)/h) ∧ e ∈ H

so that [a, h]r ∈ H by convexity. The proof that [h, a]l ∈ H is analogous.

Conversely, suppose H is closed with respect to commutators. Then

[a, h]rh ∧ e ∈ H and

[a, h]rh ∧ e = ((ah/ha) ∧ e)h ∧ e ≤ (ah/ha)h ∧ e =

((ah/a)/h)h ∧ e ≤ (ah/a) ∧ e = ρa(h) ≤ e

so ρa(h) ∈ H by convexity. The proof that λa(h) ∈ H is analogous.

The same result holds for convex submonoids of the negative cone of L:

Lemma 4.7 If S is a convex submonoid of L
−

, then S is normal if and only
if S is closed with respect to commutators.

proof: Let s ∈ S and a ∈ L and suppose S is normal. Then

e ≥ [a, s]r = (as/sa) ∧ e = ((as/a)/s) ∧ e ≥ (as/a) ∧ e = ρa(s) ∈ S

where the last inequality above follows since s ≤ e. Similarly, [s, a]l ∈ S.
Conversely, if S is closed with respect to commutators, then [a, s]rs ∈ S. But

[a, s]rs = (((as/a)/s) ∧ e)s ≤ ((as/a)/s)s ∧ s ≤

(as/a) ∧ s ≤ (as/a) ∧ e = ρa(s) ≤ e

and by convexity we have ρa(s) ∈ S. Similarly, λa(s) ∈ S.

Two “switching” identities

We often find it useful to convert one of the division operations into its
dual. The following two identities, which can be verified by straightforward
calculation, provide a means by which to do so in any residuated lattice:

z/y ≤ py\z , where p = [z/y, y]r , and
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x\z ≤ z/xq , where q = [x, x\z]l .

Note: the above identities still hold if the “∧e” factor is omitted from the
commutators.

Lemma 4.8 Let L be a residuated lattice and θ ∈ Con(L). Then the following
are equivalent:

1. a θ b

2. [(a/b) ∧ e] θ e and [(b/a) ∧ e] θ e

3. [(a\b) ∧ e] θ e and [(b\a) ∧ e] θ e

proof: Suppose a θ b. Then (a/a) θ (b/a) so that

e = [(a/a) ∧ e] θ [(b/a) ∧ e]

and the other relations in (2) and (3) follow similarly. Conversely, suppose both
[(a/b)∧ e] θ e and [(b/a)∧ e] θ e. Set r = [(a/b)∧ e]b and s = [(b/a)∧ e]a.
Then r θ b and s θ a. Moreover, r ≤ (a/b)b ≤ a and s ≤ (b/a)a ≤ b so that
r = (a∧r) θ (a∧b) and s = (b∧s) θ (b∧a) whence b θ r θ (a∧b) θ s θ a ;
we have shown (2) ⇒ (1). One proves (3) ⇒ (1) in an analogous manner.

Lemma 4.9 Let θ be a congruence relation on a residuated lattice L. Then
[e]θ := {a ∈ A | a θ e} is a convex normal subalgebra of L.

proof: Since e is idempotent with respect to all the binary operations of
L, it immediately follows that [e]θ forms a subalgebra of L. Convexity is a
consequence of the well-known fact that any block of any lattice congruence
is convex. Finally, let a ∈ [e]θ and c ∈ L. Then

λc(a) = [c\ac] ∧ e θ [c\ec] ∧ e = [c\c] ∧ e = e

so that λc(a) ∈ [e]θ. Simliarly, ρc(a) ∈ [e]θ.

Lemma 4.10 Suppose H is a convex normal subalgebra of L. For any a, b ∈
L,

(a/b) ∧ e ∈ H ⇔ (b\a) ∧ e ∈ H .
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proof: Suppose (a/b) ∧ e ∈ H . Since H is normal, we have

h := b\([(a/b) ∧ e]b) ∧ e ∈ H .

But h ≤ [b\(a/b)b]∧e ≤ (b\a)∧e ≤ e ∈ H so that (b\a)∧e ∈ H . The reverse
implication is proved similarly.

Next we characterize the congruence corresponding to a given convex nor-
mal subalgebra (see [35] in which McCarthy gives a similar description for a
related congruence in a special case).

Lemma 4.11 Let H be a convex normal subalgebra of a residuated lattice L.
Then

θH := {(a, b) | ∃h ∈ H, ha ≤ b and hb ≤ a}

= {(a, b) | (a/b) ∧ e ∈ H and (b/a) ∧ e ∈ H}

= {(a, b) | (a\b) ∧ e ∈ H and (b\a) ∧ e ∈ H}

is a congruence on L.

proof: First we show that the three sets defined above are indeed equal. That
the second and third sets are identical follows from Lemma 4.10. If (a, b) is a
member of the second set, then letting h = (a/b) ∧ (b/a) ∧ e we have h ∈ H
and

ha ≤ (b/a)a ≤ b and hb ≤ (a/b)b ≤ a

so that (a, b) is a member of the first set. Conversely, if (a, b) is a member of
the first set then for some h ∈ H we have

ha ≤ b ⇒ h ≤ b/a ⇒ h ∧ e ≤ (b/a) ∧ e ≤ e

and by convexity, we conclude that (b/a) ∧ e ∈ H . Similarly, (a/b) ∧ e ∈ H .
We now prove θH is a congruence using the second set as our description.

θ is an equivalence relation : Note that θ is reflexive since for any a ∈ L
we have (a/a) ∧ e = e ∈ H and θ is symmetric by the symmetry of its
definition. Finally, to see that θ is transitive, suppose a θ b and b θ c.
Then,

[(a/b) ∧ e][(b/c) ∧ e] ≤ [(a/b)(b/c)] ∧ e ≤ (a/c) ∧ e ≤ e

so that (a/c) ∧ e ∈ H since H is convex. Similarly, (c/a) ∧ e ∈ H so
a θ c.

12



θ is compatible with multiplication : Suppose a θ b and c ∈ L. Then

(a/b) ∧ e ≤ (ac/bc) ∧ e ≤ e

so (ac/bc) ∧ e ∈ H . Similarly, (bc/ac)∧ e ∈ H so that (ac) θ (bc). Next,
using the normality of H,

ρc((a/b) ∧ e) = (c[(a/b) ∧ e]/c) ∧ e ∈ H .

But

ρc((a/b) ∧ e) ≤ [c(a/b)/c] ∧ e ≤ [ca/b/c] ∧ e = (ca/cb) ∧ e ≤ e ∈ H

so that (ca/cb) ∧ e ∈ H . Similarly, (cb/ca) ∧ e ∈ H so that (ca) θ (cb).

θ is compatible with meet : Suppose a θ b and c ∈ L. Set r = (a/b) ∧ e.
Since r ≤ 1 we have rc ≤ c; also r ≤ a/b gives rb ≤ a Thus,

r(b ∧ c) ≤ (rb) ∧ (rc) ≤ a ∧ c .

From this it follows that r ≤ (a ∧ c)/(b ∧ c) which implies

r = (r ∧ e) ≤ [(a ∧ c)/(b ∧ c)] ∧ e ≤ e

whence [(a ∧ c)/(b ∧ c)] ∧ e ∈ H . Similarly, [(b ∧ c)/(a ∧ c)] ∧ e ∈ H so
that (a ∧ c) θ (b ∧ c).

θ is compatible with join : This proof is similar to (even easier than) the
one above.

θ is compatible with right division : Suppose a θ b and c ∈ L. Then we
have

(a/b) ∧ e ≤ [(a/c)/(b/c)] ∧ e ≤ e

so that [(a/c)/(b/c)] ∧ e ∈ H . Similarly, [(b/c)/(a/c)] ∧ e ∈ H so that
(a/c) θ (b/c). Next,

(b/a) ∧ e ≤ [(c/b)\(c/a)] ∧ e ≤ e ∈ H

so that [(c/b)\(c/a)]∧e ∈ H and, by Lemma 4.10, [(c/b)/(c/a)]∧e ∈ H ;
Similarly, [(c/a)/(c/b)] ∧ e ∈ H so that (c/a) θ (c/b).
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θ is compatible with left division : This proof is analogous to the one
above.

Theorem 4.12 The lattice CN (L) of convex normal subalgebras of a residu-
ated lattice L is isomorphic to its congruence lattice Con(L). The isomorphism
is given by the mutually inverse maps H 7→ θH and θ 7→ [e]θ .

proof: We have shown both that θH is a congruence and that [e]θ is a member
of CN (L), and it is clear that the maps H 7→ θH and θ 7→ [e]θ are monotone.
It remains only to show that these two maps are mutually inverse, since it will
then follow that they are lattice homorphisms.

Given θ ∈ Con(L), set H = [e]θ; we must show that θ = θH. But this is easy;
using Lemma 4.8,

a θ b ⇔ [((a/b) ∧ e) θ e and ((b/a) ∧ e) θ 1] ⇔

[((a/b) ∧ e) ∈ H and ((b/a) ∧ e) ∈ H ] ⇔ a θH b .

Conversely, for any H ∈ CN (L) we must show that H = [e]θH But

h ∈ H ⇒ [(h/e) ∧ e ∈ H and (e/h) ∧ e ∈ H ]

so that h ∈ [e]θH . If a ∈ [e]θH then (a, e) ∈ θH and we use the first description
of θH in Lemma 4.11 to conclude there exist some h ∈ H such that ha ≤ e and
h = h · e ≤ a. Now it follows from the convexity of H that h ≤ a ≤ h\e ⇒
a ∈ H .

5 Subalgebra generation

In the previous section we saw that the congruences of a residuated lattice L

correspond to its convex normal subalgebras. Here we show that these sub-
algebras in turn correspond to the convex normal submonoids of L

−

. Thus,
letting CN (L) and CNM(L

−

) denote respectively the lattices of convex nor-

mal subalgebras of L and convex normal submonoids of L
−

, we conclude that
Con(L)

∼
= CN (L)

∼
= CNM(L

−

). Finally, we describe the convex normal
subalgebra generated by an arbitrary subset S ⊆ L.

Our next theorem shows that a convex normal subalgebra is completely
determined by its negative cone:
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Theorem 5.1 Let S be a convex normal submonoid of L
−

. Then defining the
set HS by

HS := {a | s ≤ a ≤ s\e for some s ∈ S},

HS is a convex normal subalgebra of L and S = H
−

S . Conversely, if H is
any convex normal subalgebra of L then, setting SH = H

−

, SH is a convex
normal submonoid of L

−

and H can be recovered from SH as described above.
Moreover, the mutually inverse maps H 7→ SH and S 7→ HS establish a lattice
isomorphism between CN (L) and CNM(L

−

).

proof: Given a convex, normal subalgebra H of L, the assertions about SH

are easy to verify. Thus we turn our attention to the other direction: Let S

be a convex normal submonoid of L
−

and define HS as above. It is easy to
show that HS is convex and normal. Moreover, it is immediate that H

−

S = S.
However, we must verify that HS is a subuniverse. Clearly e ∈ HS, so we
check for closure under the binary operations: Let a, b ∈ HS. Then there are
s, t ∈ S so that

s ≤ a ≤ s\e , and

t ≤ b ≤ t\e .

Closure under multiplication : Set r = (st)(ts) ∈ S. Then, by Lemma 3.2
(15), we have

r ≤ st ≤ ab ≤ (s\e)(t\e) ≤ ts\e ≤ r\e .

Closure under meet : Set r = st. Then

r = st ≤ s ∧ t ≤ a ∧ b ≤ (s\e) ∧ (t\e) ≤ (r\e) ∧ (r\e) = r\e .

Closure under join : Similar to the above proof.

Closure under left division : We have

a\b ≤ s\(t\e) = (ts)\e ,

but to find a lower bound for a\b is a little trickier:

First notice that

t ≤ b and sa ≤ e ⇒ tsa ≤ b .

15



From this we derive

ats(ats\tsa) ≤ tsa ≤ b ⇒ ts(ats\tsa) ≤ a\b .

Setting p = (ats)\(tsa) and q = ts(p∧e), we know that p∧e = [ts, a]l ∈ S
and so q ∈ S. But now q ≤ tsp ≤ a\b and we’ve found the desired lower
bound. Finally, setting r = qts, it follows that r ≤ a\b ≤ r\e.

Closure under right division : First observe that

s ≤ a and tb ≤ e ⇒ stb ≤ a ⇒ st ≤ a/b ,

but to find an upper bound is a little trickier:

a/b ≤ (s\e)/t ≤ pt\(s\e) = spt\e ,

where
p = [(s\e)/t, t]r

as given by the switching identity. But p ∈ S by the comments following
Lemma 4.6 and we have found an appropriate upper bound. Finally, we
can set r = (st)(spt) and it follows that r ≤ a/b ≤ r\e.

We have shown that the maps between the two lattices are well-defined and
mutually inverse. Since they are clearly isotone, the theorem is proved.

The next two lemmas provide a description of the convex normal sub-
monoid generated by an arbitrary subset of the negative cone.

Lemma 5.2 For all a1, a2, . . . , an, b ∈ L, if a =
∏

aj then

∏

ρb(aj) ≤ ρb(a) , and
∏

λb(aj) ≤ λb(a) .

proof: We prove only the case n = 2; the proof can be completed by the
obvious induction.

ρb(a1)ρb(a2) = [(ba1/b) ∧ e][(ba2/b) ∧ e] ≤ [(ba1/b)(ba2/b)] ∧ e

≤ [((ba1/b)ba2)/b] ∧ e ≤ (ba1a2/b) ∧ e = ρb(a1a2) .

In the last two inequalities, we used Lemma 3.2 (5) and (4) respectively. The
proof for λb is analogous.
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Lemma 5.3 Suppose S ⊆ L
−

. Then the convex normal submonoid generated
by S is M(S), where M(S) is constructed as follows:
First, set

Ŝ = {γ(s) | s ∈ S, γ ∈ Γ}
⋃

{e}

and let
P (Ŝ) = all finite products of members of Ŝ .

Finally, define

M(S) = {x | a ≤ x ≤ e for some a ∈ P (Ŝ)} .

proof: It is clear that e ∈ M(S), that M(S) is convex and closed under
multiplication, and that any convex normal submonoid containing S must
contain M(S). Moreover, since S ⊆ L

−

, S ⊆ M(S). It only remains to show
that M(S) is normal. But this follows from Lemma 5.2 and the convexity of
M(S): If x ∈ M(S), then for some a1, a2, . . . , an ∈ Ŝ and a =

∏

aj we have
a ≤ x ≤ e. Moreover, for each j we have some γj ∈ Γ and sj ∈ S so that
aj = γj(sj). For any b ∈ L, set γ′

j = ρb◦γj , a′
j = γ′

j(sj) and a′ =
∏

a′
j. Then

for each j, a′
j ∈ Ŝ whence a′ ∈ P (Ŝ). Finally, from Lemma 5.2, we have

a′ =
∏

a′
j =

∏

ρb(aj) ≤ ρb(a) ≤ ρb(x) ≤ ρb(e) = e

and by the convexity of M(S) we conclude that ρb(x) ∈ M(S). An analogous
proof gives λb(x) ∈ M(S).

For any subset S ⊆ L, let N (S) denote the convex normal subalgebra
generated by S.

Proposition 5.4 If S ⊆ L
−

, then

N (S) = {x | a ≤ x ≤ a\e for some a ∈ P (Ŝ)} .

proof: This follows from the previous lemmas. Clearly

N (S) = {x | b ≤ x ≤ b\e for some b ∈ M(S)} .

But if b ∈ M(S) then there is some a ∈ P (Ŝ) so that a ≤ b ≤ e from which it
follows that a ≤ x ≤ a\e.

A principal (convex normal) subalgebra is a (convex normal) subalgebra gen-

erated by a singleton; we will write P (â) for P ( ˆ{a}) and N (a) for N ({a}).
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Lemma 5.5 For any a ∈ L, N (a) = N (a′) where a′ = a ∧ (e/a) ∧ e.

proof: Clearly a′ ∈ N (a). On the other hand,

a′ ≤ a ≤ (e/a)\e ≤ a′\e ,

so that a ∈ N (a′).

Thus we have the following corollaries:

Corollary 5.6 If a ∈ L, then

N (a) = {x | b ≤ x ≤ b\e for some b ∈ P (â′)} ,

where a′ = a ∧ (e/a) ∧ e.

Corollary 5.7 Let S ⊆ L and set S∗ = {s ∧ (e/s) ∧ e | s ∈ S}. Then

N (S) = {x | a ≤ x ≤ (a\e), for some a ∈ P (Ŝ∗)} .

6 The subvariety RLC

In this section we turn our attention to the subvariety of RL generated by all
those residuated lattices that are totally ordered. Throughout this section, C
will denote the class of all residuated chains and K ⊆ C will be the class of
all subdirectly irreducible (SI) members of C. If Σ is a set of equations (or a
single equation) in the language of RL then we will write ModRL(Σ) to denote
Mod(Σ) ∩RL; that is, those residuated lattices that also model the equations
of Σ.

Definition 6.1 We let RLC = HSP(C) denote the subvariety of RL generated
by C, the class of all residuated chains.

In the first subsection, we find an equational basis for RLC. It follows
from Jónsson’s Theorem on congruence-distributive varieties (see [31]) that
the collection of all subdirectly irreducible algebras of RLC is precisely the
class K. It is this fact that aids us in discovering a concise basis of just two
additional equations for RLC , our main result of this section. It is easy to make
a list of equations that hold in RLC since any equation satisfied by chains –
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for example the distributive law – must hold throughout the subvariety. But
to characterize RLC , we seek an equation ε that captures the fact that the SI
algebras of RLC are chains. In other words, we need an equation ε such that
for any subdirectly irreducible member L of RL, if L |= ε then L is a chain.
In Lemma 6.3, we see that it suffices to capture the join-primeness of e in L

(which of course must hold in any chain). But given two elements a, b ∈ L such
that a ∨ b = e, we are led to investigate the two principal normal submonoids
N (a)

−

and N (b)
−

. Any element of their intersection must simultaneousy lie
above a product of conjugates of a and a product of conjugates of b and hence
the join of these two products. But if L is to be a chain, this intersection must
be trivial, and thus our first approximation for ε becomes something of the
form:

[γ1(a)γ2(a) . . . γj(a)] ∨ [γ′
1(b)γ

′
2(b) . . . γ′

k(b)] = e.

Other lemmas allow us to unravel the iterated conjugations and, by replacing
a and b with a/(a∨ b) and b/(a∨ b), we capture the hypothesis that a∨ b = e

producing finally the four-variable equation

ε : λz(x/(x ∨ y)) ∨ ρw(y/(x ∨ y)) = e.

It is easy to see that RLC |= ε and, including a weakened form of distributivity

εd : e ∧ (x ∨ y) = (e ∧ x) ∨ (e ∧ y),

we will show that ε and εd together define RLC relative to RL.
Of course the dual version of ε (in which right division is replaced by

left division) could have been used in place of ε. We note this in the second
subsection where we also look at some additional equations of interest that hold
in RLC . Finally, in the third subsection, we show that each member L of RLC

has the property that the compact elements of Con(L) form a relatively normal
lattice, a property investigated for lattices in general by Hart, Snodgrass, and
Tsinakis in [27] and [43].

6.1 An equational basis for RLC

The following observation will make some of our proofs more concise: if L is
totally ordered, then for any a, b ∈ L with say a ≤ b we have that b/a ≥ a/a ≥
e so that L satisfies the equation

ε1 : (x/y) ∨ (y/x) ≥ e.
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Therefore, this equation holds throughout RLC and the next lemma shows that
it is a consequence of ε.

Lemma 6.2 Let ε and ε1 be as defined above. For any L ∈ RL, if L |= ε then
L |= ε1.

proof: Suppose L ∈ RL and L |= ε. In particular, when z = w = e we have

e = [[x/(x ∨ y)] ∧ e] ∨ [[y/(x ∨ y)] ∧ e]

= [(x/x) ∧ (x/y) ∧ e] ∨ [(y/x) ∧ (y/y) ∧ e]

= [e ∧ (x/y)] ∨ [e ∧ (y/x)] ≤ [(x/y) ∨ (y/x)] ∧ e ≤ e

from which it follows that e = [(x/y) ∨ (y/x)] ∧ e.

The next lemma is immediate.

Lemma 6.3 If L ∈ RL, L |= ε1 and if e is join-prime in L, then L is a chain.

We must now show that for subdirectly irreducible members of RL, equa-
tion ε implies the join-primeness of e. The next two lemmas will be useful in
this endeavor. Lemma 6.4 is an obvious generalization of Theorem 3, pg 324,
of [5].

Lemma 6.4 Let L be any residuated lattice and {ai | 1 ≤ i ≤ n}, {bj | 1 ≤
j ≤ m} ⊆ L

−

finite subsets of the negative cone of L with the property that
ai∨bj = e for any i and j. Then a∨b = e, where a =

∏n
i=1 ai and b =

∏m
j=1 bj.

proof: We first fix an arbitrary j and proceed by induction on n to show that
a ∨ bj = e. Since this holds for all j, the lemma will then follow by reversing
the rôles of the a’s and b’s.

If n = 1, the conclusion is immediate. Suppose the result holds for some
n and that {ai | e ≤ i ≤ (n + 1)} together with {bj} satisfy the hypotheses of
the lemma. Set a′ :=

∏n
i=1 ai and a :=

∏n+1

i=1 ai; by the induction hypothesis,
a′ ∨ bj = e. But now we have

a ∨ bj = a′an+1 ∨ bj ≥ a′an+1 ∨ bjan+1 = (a′ ∨ bj)an+1 = an+1

and of course a ∨ bj ≥ bj so that

e ≥ a ∨ bj ≥ an+1 ∨ bj = e

which gives the desired result.
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Lemma 6.5 Suppose L is a residuated lattice such that L |= ε. For all a, b ∈
L

−

and for any iterated conjugation maps γ1, γ2, if a∨b = e then γ1(a)∨γ2(b) =
e.

proof: Let a, b ∈ L
−

and suppose a ∨ b = e. Notice that it suffices to show
only that γ(a) ∨ b = e for all γ ∈ Γ since the same argument applied to γ1(a)
and b will yield the final claim. Thus let γ ∈ Γ be arbitrary and we proceed by
induction on the complexity of γ. If γ = λc for some c ∈ L, then since L |= ε
we have

γ(a) ∨ b = λc(a) ∨ ρe(b) = λc(a/a ∨ b) ∨ ρe(b/a ∨ b) = e ,

and similarly if γ = ρd for some d ∈ L. Now suppose the claim holds for some
γ; then for any c, d ∈ L, and setting a′ = γ(a), we have a′ ∨ b = e and the
same argument as given above shows that

[λc◦γ](a) ∨ b = λc(a
′) ∨ b = e and [ρd◦γ](a) ∨ b = ρd(a

′) ∨ b = e .

Finally we are ready to prove the following crucial lemma.

Lemma 6.6 Suppose L ∈ RL is subdirectly irreducible and that L |= ε ∧ εd.
Then e is join-prime in L.

proof: Equation εd implies that e is join-prime if and only if e is join-

irreducible. So let a, b ∈ L be such that a ∨ b = e. Clearly, a, b ∈ L
−

and the two previous lemmas together imply that N (a)
−

⋂

N (b)
−

= {e}. But
then the two corresponding congruences have trivial intersection and since L

is subdirectly irreducible, it must have been that either a = e or b = e.

We now have the main theorem of this section:

Theorem 6.7 RLC = ModRL(ε ∧ εd) where ε and εd are the equations

ε : λz(x/(x ∨ y)) ∨ ρw(y/(x ∨ y)) = e

εd : e ∧ (x ∨ y) = (e ∧ x) ∨ (e ∧ y)
.
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6.2 Other equations of RLC

Recall that for an arbitrary residuated lattice L, the division operations pre-
serve meets in the numerator, and convert joins in the denominator into meets
(see Lemma 3.2). In RLC we also have the order-dual versions of these equa-
tions as listed below. For completeness, we include equations ε and εd here,
together with the multiplicative duals of all the equations. In the propositions
that follow, we investigate the relationships among these equations. All of
our discussion is assumed to be relative to the equational theory of RL. We
note that Theorem 13.1 of [48] contains versions of these propositions for the
special case in which e is the top element of the lattice.

Equations 6.8

εd : (x ∨ y) ∧ e = (x ∧ e) ∨ (y ∧ e)
ε : λz[x/(x ∨ y)] ∨ ρw[y/(x ∨ y)] = e

ε′ : λz[(x ∨ y)\x] ∨ ρw[(x ∨ y)\y] = e

ε1 : (x/y) ∨ (y/x) ≥ e ε′1 : (y\x) ∨ (x\y) ≥ e

ε2 : x/(y ∧ z) = (x/y) ∨ (x/z) ε′2 : (y ∧ z)\x = (y\x) ∨ (z\x)
ε3 : (x ∨ y)/z = (x/z) ∨ (y/z) ε′3 : z\(x ∨ y) = (z\x) ∨ (z\y)

Proposition 6.9 Equation ε implies equation ε1 and equation ε′ implies equa-
tion ε′1.

proof: The first half of the statment was proved in Lemma 6.2. The primed
version is proved similarly.

Proposition 6.10 Equations ε1 and εd together imply both ε2 and ε3, each of
which implies equation ε1. Thus, in the presence of εd, equations ε1, ε2, and ε3

are equivalent. The analogous statement for the primed equations also holds.

proof: To see that ε2 ⇒ ε1, note that

(x/y) ∨ (y/x) ≥ [(x ∧ y)/y] ∨ [(x ∧ y)/x] = (x ∧ y)/(x ∧ y) ≥ e

and ε3 ⇒ ε1 since

(x/y) ∨ (y/x) ≥ [x/(x ∨ y)] ∨ [y/(x ∨ y)] = (x ∨ y)/(x ∨ y) ≥ e .
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Next, suppose εd and ε1 hold. Since it is always true that the left-hand side
in ε2 is greater than or equal to the right-hand side, it suffices to show the
reverse inequality. To this end, consider the following:

[x/(y ∧ z)]\[(x/y) ∨ (x/z)] ≥ [(x/(y ∧ z))\(x/y)] ∨ [(x/(y ∧ z))\(x/z)]

≥ [(y ∧ z)/y] ∨ [(y ∧ z)/z] = [(y/y) ∧ (z/y)] ∨ [(y/z) ∧ (z/z)]

≥ [e ∧ (z/y)] ∨ [e ∧ (y/z)] = e ∧ [(z/y) ∨ (y/z)] = e .

The inequality in the second line is from item (8) of Lemma 3.2. We used εd

and ε1 in the equalities of the last line. But now we’ve shown that

e ≤ [x/(y ∧ z)]\[(x/y) ∨ (x/z)]

which is equivalent to ε2. A similar observation yields ε3:

[(x/z) ∨ (y/z)]/[(x ∨ y)/z] ≥ [(x/z)/((x ∨ y)/z)] ∨ [(y/z)/((x ∨ y)/z)]

= [x/(x ∨ y/z)z] ∨ [y/(x ∨ y/z)z] ≥ [x/x ∨ y] ∨ [y/x ∨ y]

= [(x/x) ∧ (x/y)] ∨ [(y/x) ∧ (y/y)] ≥ [e ∧ (x/y)] ∨ [e ∧ (y/x)]

= e ∧ [(x/y) ∨ (y/x)] = e

and ε3 follows.

Proposition 6.11 In the presence of equation εd, equations ε and ε′ are equiv-
alent.

proof: The proof in Theorem 6.7 that {εd, ε} forms a basis for RLC is easily
modified to show that {εd, ε} is also a basis. The proposition now follows.

Corollary 6.12 Equation εd, together with either of ε or ε′, imply all of the
others in the list of Equations 6.8.
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6.3 Congruences in RLC

For any L ∈ RL and a, b ∈ L we always have N (a ∨ b) ⊆ N (a) ∨ N (b) and
N (a ∧ b) ⊆ N (a) ∨ N (b). However, if a and b come from the negative cone
then we can say more.

Proposition 6.13 Let L ∈ RL and a, b ∈ L
−

be arbitrary. Then,

1. N (a ∧ b) = N (a) ∨ N (b).

2. N (a ∨ b) ⊆ N (a) ∩ N (b). Equality holds if L ∈ SP(C) (in particular,
equality holds if L ∈ RLC).

proof: Statement (1) and the inclusion of statement (2) are easy to verify.

Suppose now that a, b ∈ L
−

. If L is a chain then it is clear that we have equality
in (2). Suppose L ≤

∏

t Ct where Ct ∈ C for all t, and let x ∈ [N (a)∩N (b)]
−

.
Then there are iterated conjugation maps γ1, . . . , γn ∈ Γ and δ1, . . . , δm ∈ Γ
so that

n
∏

j=1

γj(a) ≤ x ≤ e and
n

∏

i=1

δi(b) ≤ x ≤ e .

Fix an arbitrary t and suppose pt(a) ≥ pt(b) where pt is the usual projection
map. Then

e ≥ pt(x) ≥ pt





n
∏

j=1

γj(a)



 =
n

∏

j=1

pt(γj(a)) =
n

∏

j=1

pt(γj(a ∨ b))

≥





n
∏

j=1

pt(γj(a ∨ b))





[

m
∏

i=1

pt(δi(a ∨ b))

]

= pt









n
∏

j=1

(γj(a ∨ b))





[

m
∏

i=1

(δi(a ∨ b))

]



 ,

and an analogous argument shows that

e ≥ pt(x) ≥ pt









n
∏

j=1

(γj(a ∨ b))





[

m
∏

i=1

(δi(a ∨ b))

]




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also holds if pt(a) ≤ pt(b) so that

e ≥ x ≥





n
∏

j=1

(γj(a ∨ b))





[

m
∏

i=1

(δi(a ∨ b))

]

,

which implies that x ∈ N (a ∨ b). Since a convex normal subalgebra is com-
pletely determined by its negative cone, the lemma is proved.

Corollary 6.14 For L ∈ RLC, the compact members of CN (L) are the prin-
cipal, convex normal subalgebras N (a) for a ∈ L

−

.

Definition 6.15 A poset, P, is called a root system if every principal up-
set, ↑p := {x ∈ P | x ≥ p}, is a chain.

Definition 6.16 A lower-bounded, distributive lattice L is said to be rela-

tively normal if its prime ideals form a root-system under set inclusion.

In [27], the following alternative characterization of relatively normal lat-
tices, due to Monteiro [37], is stated:

Theorem 6.17 Let L be a lower-bounded, distributive lattice. Then the fol-
lowing are equivalent:

1. L is relatively normal.

2. For every a, b ∈ L there exist a′, b′ ∈ L so that a′ ∧ b′ = 0 and a ∨ b′ =
a′ ∨ b = a ∨ b (it necessarily follows that a′ ≤ a and b′ ≤ b).

Proposition 6.18 If L ∈ RLC, then the compact members of Con(L) form a
relatively normal lattice.

proof: Suppose a, b ∈ L
−

. Set a′ := (a/b)∧e and b′ := (b/a)∧e. Then notice
that

a′ ∨ b′ = [(a/b) ∧ e] ∨ [(b/a) ∧ e] = [(a/b) ∨ (b/a)] ∧ e = e

so that we have

N (a′) ∧N (b′) = N (a′ ∨ b′) = N (e) = {e} .
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Next, notice that, since a ≤ e, b/a ≥ b whence b′ = (b/a) ∧ e ≥ b ∧ e = b.
Thus, a ∧ b′ ≥ a ∧ b from which it follows that

N (a) ∨N (b′) = N (a ∧ b′) ⊆ N (a ∧ b) .

We need to show the reverse inclusion. To this end, observe that

(a ∧ b′)2 ≤ (a ∧ b′)a ≤ a2 ∧ b′a ≤ a ∧ [(b/a)a] ≤ a ∧ b ≤ e

so that a ∧ b ∈ N (a ∧ b′). The proposition now follows from the symmetry of
the definitions.

7 Concluding remarks

7.1 Looking Back

Historically, the origins of residuation theory lie in the study of ideal lattices of
rings, and among the first papers published on the subject are those of Ward
and Dilworth in the late 1930’s (see [15], [16], [45], [46], [47], and [48]). Over
the years, substantial work in this area led to the development of Multiplicative
Ideal Theory (see [20] by Gilmer or [34] by Larsen and McCarthy).

As for residuation, the closely related concept of adjunctions was developed
as a part of category theory beginning in the 1940’s, but it wasn’t until the
late 40’s and early 50’s that the idea of a residuated map as a separate entity
began to appear in papers such as [4] and [39]. During the next two decades few
works dealt specifically with the subject although several refer to it indirectly
or in passing. Some notable examples include the 1963 book by Fuchs [17],
particularly his chapter on “Lattice-ordered semigroups”, and the 1967 edition
of Birkhoff’s classic text Lattice Theory [5]. The latter addresses the topic in
two newly added sections, “Residuation” and “Applications”, which expand
on the brief comments found in earlier editions. Finally, in 1972, Blyth and
Janowitz published a large tome titled Residuation Theory, [7], which was, as
they state in the preface, “the first unified account of this topic.” Included
in their book is a much more extensive bibliography than we give here. As
was mentioned earlier, there has been substantial research regarding some
specific classes of residuated structures, including lattice-ordered groups and
MV-algebras. The theory of lattice-ordered groups is a natural extension of
the theory of Riesz spaces (see [1] and the references therein). MV-algebras,
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introduced by C.C. Chang in 1958 as the algebraic counterparts of ℵ0-valued
propositional calculus, also serve as the algebraic structures of truth values
for several calculi including fuzzy logics (see [26] and [38]). A comprehensive
development of the theory of MV-algebras can be found in [9].

7.2 Looking Ahead

Recently, Hart, Rafter and Tsinakis [28] began an investigation into the general
structure of commutative residuated objects and a large part of this paper has
been devoted to extending their results to the non-commutative case. These
works represent an attempt to understand such structures in a comprehensive
way and from the viewpoint of universal algebra. Here, in particular, we de-
velop the concept of a normal subalgebra and we give a canonical description
of the elements of the normal subalgebra generated by an arbitrary subset.
This, in turn, allows us to completely describe the connection between the
subalgebra lattice and the lattice of congruences, showing that RL is an “ideal
variety”. Furthermore, one always likes to have a concise equational charac-
terization for a variety and we provide that here for both RL and RLC . In the
process, we show that the members of RLC have certain properties that we
believe could lead to new decomposition theorems for the finite objects of this
class. Such results should further illuminate their structure in a fundamental
way.

We believe that the subject of residuated lattices is still wide open with
many areas ripe for possible research. For example, several new results re-
garding the atoms of the lattice of subvarieties of RL have been obtained by
the participants of the senior author’s (Tsinakis’) Spring 2000 and Fall 2001
seminars on residuation theory. These, together with research into problems
of decidability and free objects, are currently being prepared for publication
[2] and [18].

In this section we outline a few questions and some possible lines of re-
search, several of which we hope to investigate in the near future. We hesitate
to call them “open questions” since this phrase tends to imply that they have
already resisted efforts to solve them. Rather, these are based on marginal
notes made during our research and as yet we have spent little time working
on them. Perhaps some will turn out to be truly challenging while others may
yield quickly once attention has been focused on them.

• Does there exist a representation theorem for the class RL or the class
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RLC? It is well-known that any group can be represented as a group of
permutations of a set (Cayley’s representation theorem) and any l-group
as a group of order automorphisms of a totally ordered set (Holland’s
representation theorem, [29]). We wonder whether it is possible that
each distributive member of RL, or perhaps some suitable subclass, can
be embedded into the lattice of residuated self-maps of some chain (with
composition of maps as the multiplication). In [6] we point out that the
obvious embedding fails in general.

• Is there a “nice” characterization of those lattices that admit residu-
ation? We know, for example (see [6]), that any finite lattice admits
residuation as does any upper-bounded chain while any lower bounded
lattice without a top element cannot be residuated. Perhaps a starting
point would be to determine whether (or which) unbounded chains admit
residuation.

• Can one fruitfully explore further the lattice of subvarieties of RL, de-
noted L(RL), and perhaps shed some light on parts of its structure (see
Figure 1 in the introduction)? Much work has been done along these lines
for various subclasses. In particular, much is known about the intervals
below LG, ℓ-groups, and below Br, Brouwerian algebras. For example, it
is known that the variety of lattice-ordered Abelian groups is an atom in
the subvariety lattice of ℓ-groups, and hence also in L(RL), and that this
atom has uncountably many covers (see [30] and [40]). It would be of
interest if one could further illuminate the structure near the bottom of
L(RL), perhaps by describing some interesting classes of atoms. Recent
work ([2] and [18]) has made some progress in this direction.

• Since the variety RL is an ideal variety, we can define the so-called
Mal’cev product on the lattice of subvarieties in the following way: given
two subvarieties V1 and V2, define

V1 ∗ V2 := {L ∈ RL | ∃ H ∈ SubCN (L) with H ∈ V1 and L/θH ∈ V2}.

Of great interest would be any results that contribute to an understand-
ing of the multiplicative structure of L(RL) with respect to this opera-
tion.

• Let X be any finite non-empty chain and let us order the free monoid,
FM(X), in the following way: for two words w1, w2 ∈ FM(X) we define
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w1 < w2 if and only if either length(w2) < length(w1), or length(w1) =
length(w2) and w1 precedes w2 in the dual lexicographic ordering induced
by the ordering on X. This ordering is a compatible residuated total
order on FM(X) and there exist many other total orderings with respect
to which the free monoid is residuated. Free monoids are of course
cancellative and it is known that the members of RL that satisfy the
cancellative property form a subvariety (in this setting, the cancellative
property is captured by the equations (xy)/y = x = y\(yx)). Denoting
this subvariety CanRL, one can show that CanRLC := CanRL ∩ RLC

is generated by residuated totally ordered, free monoids. It would be
of interest to provide a “canonical” description of the free algebras of
CanRLC , in the style of the description of the free objects in the variety
of representable lattice-ordered groups (see, for example, [41]).

• Can one describe all residuated total orders on FM(X), where X is a
finite set?

• Let Z denote the integers (with the usual ordering) and Z− its negative
cone. Under the usual addition, these two chains become members of RL.
It is well known that Z generates the variety of lattice-ordered abelian
groups, which is an atom in the subvariety lattice L(RL). It is also simple
to see that that Z− also generates an atom in the subvariety lattice. It
is shown in [2] that these are the only two atoms that lie below the
subvariety of commutative, cancellative residuated lattices – but it is an
open question whether there are any other atoms below CanRL itself.

• Although in many well-known subvarieties of RL distributivity is a con-
sequence of the cancellative law, this is not true in general (see [2]). We
would like to know to what extent this implication fails. In particular, is
every finite lattice a sublattice of some cancellative, residuated lattice?
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