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Abstract. Equivalences and translations between consequence rela-
tions abound in logic. The notion of equivalence can be defined syn-
tactically, in terms of translations of formulas, and order-theoretically,
in terms of the associated lattices of theories. W. Blok and D. Pigozzi
proved in [2] that the two definitions coincide in the case of an algebraiz-
able sentential deductive system. A refined treatment of this equiva-
lence was provided by W. Blok and B. Jónsson in [3]. Other authors
have extended this result to the cases of k-deductive systems and of
consequence relations on associative, commutative, multiple conclusion
sequents. Our main result subsumes all existing results in the literature
and reveals their common character. The proofs are of order-theoretic
and categorical nature.

1. introduction

The aim of the present paper is to propose an order-theoretic and cat-
egorical framework for various constructions and concepts connected with
the study of logical consequence relations. Our approach places under a
common umbrella a number of existing results regarding the equivalence of
consequence relations and provides a road map for future research in this
area.

A consequence relation is defined relative to an algebraic signature L. The
set Fm of L-formulas is the universe of the term algebra Fm of signature L
over a countably infinite set of variables. Throughout this paper, we identify
the algebra Eq of L-equations with the algebra Fm× Fm, and denote by
Σ the monoid of substitutions of Fm.

W. Blok and D. Pigozzi proved in [2] that a substitution invariant, finitary
consequence relation ⊢ on Fm is algebraizable if and only if there exists an
algebraic consequence relation |= on Eq such that the lattices Th⊢ and Th|=

of the theories corresponding to ⊢ and |= are isomorphic under a map that
commutes with inverse substitutions. A refined treatment of this equivalence
was provided by W. Blok and B. Jónsson in [3]. They observed that the
definition of algebraizability of ⊢, given in [2], can be rephrased as follows:
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there exist (i) an algebraic consequence relation |= on Eq and (ii) finitary
maps τ : Fm → P(Eq), and ρ : Eq → P(Fm) (referred to as translators),
which commute with substitutions, such that for all Ψ ∪ {φ} ∈ P(Fm) and
ε ∈ Eq,

(1) Ψ ⊢ φ iff τ [Ψ] |= τ(φ), and
(2) ε =||= τρ(ε).

In addition, they extended the previously mentioned result in [2] in the
setting of M -sets.

Our approach, which owes considerable intellectual debt to the cited work
of Blok and Jónsson, is more general and places the aforementioned consider-
ations on solid algebraic and categorical ground. Starting with the concrete
situation above, we note that there exists a natural action of Σ on Fm that
extends to an action of the corresponding power sets. The power set P(Σ) is
a ringlike object (to be precise a semiring with identity) – in which set-union
plays the role of addition and complex product serves as multiplication. On
the other hand, P(Fm) is a structure corresponding to an abelian group (to
be precise a commutative monoid), with set-union playing again the role of
addition. The latter action possesses the critical property of being residu-
ated, which, in this particular instance, means that it preserves arbitrary
unions in each coordinate. Analogous comments hold for the action of Σ on
Eq.

This concrete situation leads naturally to the general concept of a (left)
module. The scalars of such a structure are the elements of a complete
residuated lattice A. The vectors form a complete lattice P. The scalar
multiplication ⋆ : A×P → P is a bi-residuated map (i.e., a residuated map
in each coordinate) that satisfies the usual properties of a monoid action. For
a given complete residuated lattice A, all A-modules constitute the objects
of a category, AM, whose morphisms are residuated maps that preserve
scalar multiplication.

The category AM provides an ideal environment to abstract the afore-
mentioned concepts and identify their categorical properties. For example,
the structural consequence relations on an object P correspond bijectively
to the epimorphic images of P. Thus, such relations may be identified with
objects of this category. Not surprisingly then, we stipulate that two struc-
tural consequence relations are equivalent if the A-modules corresponding
to them are isomorphic. For the particular case where P is the powerset of
formulas and A the powerset of substitutions, the module associated with a
consequence relation is the lattice of theories enriched by inverse substitu-
tions; the isomorphism of the modules then captures exactly the fact that
the enriched (with inverse substitutions) lattices of theories are isomorphic.
On the other hand, we can define equivalence of structural consequence rela-
tions by abstracting the second condition for algebraizability stated above,
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namely the existence of syntactic translators with the appropriate proper-
ties.

The second definition always implies the first. The main result of this
work identifies categorically the modules for which the two definitions coin-
cide: they are precisely the projective objects of this category. For projective
modules P and Q, the result reads as follows. Let ⊢γ and ⊢δ be two struc-
tural consequence relations on P and Q, respectively, and let γ and δ be
the structural closure operators on P and Q that correspond to ⊢γ and ⊢δ.
Then, for every isomorphism f between the modules of theories Pγ = Th⊢γ

and Qδ = Th⊢δ
, there exist translators (i.e., module morphisms) τ : P → Q

and ρ : Q → P such that δτ = fγ and γρ = f−1δ. This result subsumes
the cases considered in [3], as well as those involving the equivalence of
structural consequence relations on sequents.

More specifically, we prove that the P(Σ)-modules P(Fm) of formulas
and P(Eq) of equations are projective (Corollary 5.9). Each of these mod-
ules is cyclic, i.e., it is generated by a single element. An interesting ad-
ditional result is Theorem 5.7, which presents several characterizations of
projective cyclic A-modules.

Let Seq be a set of sequents (single conclusion, multiple conclusion or
non-associative, multi-sequents or hypersequents; refer to [11], [7] or [1]).
Unless all elements in Seq have the same length, the P(Σ)-module P(Seq)
is not cyclic (Proposition 5.10), but we prove that it is projective (Theo-
rem 5.13). This result is proved by noting that P(Seq) is a coproduct of
cyclic projective modules.

J. Rebagliato and V. Verdú [15] have defined the notion of equivalence
of two consequence relations on (associative) sequents. The results in [3]
do not cover the case of sequents, but it follows from Corollary 6.17 that
the isomorphism of the modules of theories is equivalent to the definition of
Rebagliato and Verdú [15] and to the one of Raftery [14].

Lastly, Corollary 6.16 guarantees that under additional natural assump-
tions the desired translators τ and ρ are finitary; i.e., they send compact
elements to compact elements. In the case of powersets, this means that
they map finite sets to finite sets.

In Section 2, after we review the case of an algebraizable consequence re-
lation we give an equivalent formulation of the definition in terms of transla-
tors, which extends to the situation of consequence relations over sequents.
Then we characterize the extensions of these maps to powersets and provide
the necessary intuition leading to the definition of a module in the more
general setting of complete lattices in Section 3. In Section 4 we review
all the necessary background on residuation theory, closure operators and
consequence relations, and develop the elementary theory of modules that
will be necessary for the rest of the paper.

Section 5 makes use of the residuation setting to give characterizations of
the notions of similarity and equivalence of consequence relations introduced
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there, while Section 6 puts things in a categorical setting by identifying the
modules for which equivalences (or structural representations) are induced
by translators with the projective modules in the appropriate category. At
the same time, cyclic and cyclic projective modules are characterized, while
the consequence relations on the set of formulas are shown to be particular
cases of cyclic projective modules. The case of sequents is handled by ap-
pealing to coproducts in the category. Finally, in Section 7 it is shown that
the assumption of finitarity can be safely added to the preceding study. By
working in the appropriate ‘finitary’ subcategory it is proved that the induc-
ing translators can be taken to be finitary if all the other objects involved
are assumed finitary. This involves the identification of the notion of regular
modules, which are shown to be projective now in the said subcategory.

2. Consequence relations and translations

2.1. Algebraizability. As usual, by a propositional (or algebraic) language
we mean a pair L = 〈L,α〉 consisting of a set L and a map α from L to the
natural numbers. The elements of L are called (primitive) connectives (or
operation symbols) and the image of a connective under α is called the arity
of the connective.

An L-algebra is a pair A = 〈A,Op[L]〉, where A is a set, Op is a map
that assigns an operation Op(f) = fA on A of arity α(f) to every operation
symbol f of L; often the map Op is considered understood for a given algebra
A. If L is finite, we usually list the elements of Op[L] in the expression
〈A,Op[L]〉.

We denote by FmL the set of (propositional) formulas (or terms) over the
language L and a countably infinite set V ar of propositional variables. Also,
FmL denotes the associated L-algebra. We denote by ΣL the endomorphism
monoid of FmL and refer to its elements as substitutions.

An (asymmetric) consequence relation over the set FmL is a subset ⊢ of
P(FmL) × FmL satisfying the following conditions, for all subsets
Φ ∪ Ψ ∪ {φ,ψ, χ} of FmL:

(1) if φ ∈ Φ, then Φ ⊢ φ; and
(2) if Φ ⊢ ψ, for all ψ ∈ Ψ, and Ψ ⊢ χ, then Φ ⊢ χ.

Usually, we write φ ⊢ ψ for {φ} ⊢ ψ. A consequence relation ⊢ over FmL

is called finitary, if for all subsets Φ ∪ {φ} of FmL, whenever Φ ⊢ φ, there
exists a finite subset Φ0 of Φ such that Φ0 ⊢ φ. It is called substitution
invariant or structural, if for every substitution σ ∈ ΣL, and for all subsets
Φ ∪ {φ} of FmL, Φ ⊢ φ implies σ[Φ] ⊢ σ(φ).

The deducibility (or provability) relation of a Hilbert system with finitely
many rule schemes (we consider axiom schemes as special cases of rule
schemes) is a finitary and substitution invariant consequence relation. For
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example, the deducibility (or provability) relation ⊢CPL of Classical Propo-
sitional Logic (CPL) is a finitary and substitution invariant consequence
relation over FmL, where L is the language of CPL.

Associated with a consequence relation ⊢ on FmL is a closure operator γ⊢
on FmL, defined by γ⊢(Φ) = {ψ ∈ FmL |Φ ⊢ ψ}. Conversely, a closure op-
erator FmL gives rise to a consequence relation. We discuss this connection
in a more general setting in Section 3.

By an equation over L we mean a pair of elements s, t ∈ FmL and we
usually denote it by the expression s ≈ t. We denote by EqL the L-algebra
(FmL)2 of equations over L. A substitution invariant, finitary consequence
relation over EqL is defined by analogy to the previous case. If A is an
L-algebra, h : FmL → A is a homomorphism and (s ≈ t) ∈ EqL, then we
denote by h(s ≈ t) the pair (h(s), h(t)) and we refer to it as an equality ; we
say that the equality is true if h(s) = h(t).

If K is a class of L-algebras, and E ∪ {ε} is a subset of EqL, E |=K ε
means that for all A ∈ K and all homomorphisms h : FmL → A, if h[E] is
a set of true equalities, then h(ε) is a true equality. It is clear that |=K is a
substitution invariant consequence relation over EqL. It is well known , see
e.g. [14], that |=K is finitary iff K is closed under ultraproducts.

Our discussion in the remainder of this section draws heavily from [3].
According to Blok and Pigozzi [2], a deductive system is a pair 〈L,⊢〉, where
L is a propositional language and ⊢ is a substitution invariant, finitary
consequence relation over FmL.

A deductive system 〈L,⊢〉 is called algebraizable ([2]), if there exists a
class of L-algebras K, a finite set of equations ui ≈ vi, i ∈ I, on a single
variable and a finite set of binary definable connectives ∆j , j ∈ J , such that
for every subset Ψ ∪ {φ} of FmL and for every equation s ≈ t over FmL,

(1) Ψ ⊢ φ iff {ui(ψ) ≈ vi(ψ) | ψ ∈ Ψ} |=K ui(φ) ≈ vi(φ), for all i ∈ I,
and

(2) s ≈ t =||=K {ui(s∆j t) ≈ vi(s∆j t) | i ∈ I, j ∈ J}.

The class K is called an equivalent algebraic semantics for 〈L,⊢〉.
It can be shown that the combination of (1) and (2) above is equivalent

to the condition that for every set of equations E ∪ {s ≈ t} over FmL and
for every φ ∈ FmL,

(3) E |=K s ≈ t iff {u∆j v | u ≈ v ∈ E, j ∈ J} ⊢ s∆j t, for all j ∈ J .
(4) φ ⊣⊢ {ui(φ)∆j vi(φ) | i ∈ I, j ∈ J}.

If we define the maps τ : FmL → P(EqL) and ρ : EqL → P(FmL) by
τ(φ) = {ui(φ) ≈ vi(φ) |i ∈ I} and ρ(s ≈ t) = {s∆j t |j ∈ J}, then conditions
(1) and (2) take the more elegant form

(1) Ψ ⊢ φ iff τ [Ψ] |=K τ(φ), and
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(2) ε =||=K τρ(ε).

Next, we identify conditions under which arbitrary maps
τ : FmL → P(EqL) and ρ : EqL → P(FmL) are of the form above. First of
all, for all φ ∈ FmL and all ε ∈ EqL, both τ(φ) and ρ(ε) are finite sets; we
will call maps that have this property finitary. Also, if φ ∈ FmL, ε ∈ EqL
and σ ∈ ΣL is a substitution, then σ[τ(φ)] = τ(σ(φ)) and σ[ρ(ε)] = ρ(σ(ε));
we will call such maps substitution invariant. The following result is implicit
in [3].

Lemma 2.1. For maps τ : FmL → P(EqL) and ρ : EqL → P(FmL), the
following conditions are equivalent.

(1) τ , ρ are finitary and substitution invariant maps.
(2) There exists a finite set of equations ui ≈ vi, i ∈ I, on a single

variable, and a finite set of binary definable connectives ∆j , j ∈ J ,
satisfying the relations τ(φ) = {ui(φ) ≈ vi(φ) | i ∈ I} and ρ(s ≈ t) =
{s∆j t | j ∈ J}.

Proof. We will show that (1) implies (2). Let x, y be distinct variables in
V ar and assume that τ(x) = {ui ≈ vi | i ∈ I} and ρ(x ≈ y) = {tj | j ∈ J}.
Since τ and ρ are finitary, it follows that I and J are finite.

If φ ∈ FmL, let κφ ∈ ΣL be the substitution that sends all variables
to φ. Since τ is substitution invariant, we have κx[τ(x)] = τ(κx(x)) =
τ(x), for every variable x. In other words, if we replace all variables in
τ(x) by x, we get back τ(x); i.e., all the equations ui ≈ vi contain single
variable. Moreover, for all φ ∈ FmL, we have τ(φ) = τ(κφ(x)) = κφ[τ(x)] =
{κφ(ui(x) ≈ vi(x)) | i ∈ I} = {ui(φ) ≈ vi(φ) | i ∈ I}.

Let V ar1 and V ar2 be two sets that partition the set V ar of all variables in
a way that x ∈ V ar1 and y ∈ V ar2. For all (s ≈ t) ∈ EqL, let κs≈t ∈ ΣL be
the substitution that sends all variables in V ar1 to s and all variables in V ar2
to t. Since τ is substitution invariant, we have κx≈y[ρ(x ≈ y)] = ρ(κx≈y(x ≈
y)) = ρ(x ≈ y). In other words, the terms tj are binary and depend only
on the variables x and y; we set tj = x∆jy. We have, for all (s ≈ t) ∈ EqL,
ρ(s ≈ t) = ρ(κs≈t(x ≈ y)) = κs≈t[ρ(x ≈ y)] = {κs≈t(x∆jy) | j ∈ J} =
{s∆jt | i ∈ I}. �

Corollary 2.2. A deductive system 〈L,⊢〉 is algebraizable iff there exist fini-
tary and substitution invariant maps τ : FmL → P(EqL) and
ρ : EqL → P(FmL), and a class of L-algebras K such that, for every subset
Φ ∪ {φ} of FmL and ε ∈ EqL,

(1) Ψ ⊢ φ iff τ [Ψ] |=K τ(φ), and
(2) ε =||=K τρ(ε).

Obviously, the maps τ and ρ extend to maps τ ′ : P(FmL) → P(EqL)
and ρ′ : P(EqL) → P(FmL), defined by τ ′(Φ) = τ [Φ] and ρ′(E) = ρ[E], for
Φ ∈ P(FmL) and E ∈ P(EqL). Moreover, τ ′(Φ) and ρ′(E) are finite, if Φ ∈
P(FmL) and E ∈ P(EqL) are finite; we will call such maps finitary. Also,
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if Φ ∈ P(FmL), E ∈ P(EqL) and σ ∈ ΣL, then σ[τ ′(Φ)] = τ ′(σ[Φ]) and
σ[ρ′(E)] = ρ′(σ[E]); we will call such maps substitution invariant. Clearly,
τ ′ and ρ′ stem from maps τ and ρ iff they preserve unions.

Example 2.3. Let ⊢BCK be the least substitution invariant consequence re-
lation on Fm{→} satisfying the following properties for all x, y, z ∈ Fm{→}.

(B) ⊢BCK (x→ y) → ((y → z) → (x→ z))
(C) ⊢BCK (x→ (y → z)) → (y → (x→ z))
(I) ⊢BCK x→ x

(K) ⊢BCK x→ (y → y)
(MP) {x, x→ y} ⊢BCK y

Actually, (I) is redundant, but we include it for later reference. It is shown
in [2] that ⊢BCK is algebraizable and the {→}-subreducts of commutative
integral residuated lattices form an algebraic semantics for it. (Refer to
[5] or [12] for a short introduction to residuated lattices, and to [9] for a
comprehensive treatment of these structures.) The corresponding maps τ
and ρ are given by τ(φ) = {φ ≈ (φ → φ)} and ρ(u ≈ v) = {u → v, v → u}.
An extension of this correspondence is obtained by the algebraizability of
substructural logics via residuated lattices; see [10]. �

A theory of a consequence relation ⊢ over FmL is a subset T of FmL

closed under ⊢; i.e., for all φ ∈ FmL, T ⊢ φ implies φ ∈ T . The set of
theories of ⊢ forms a lattice that we denote by Th⊢. Likewise we define the
lattice of theories Th|= of a consequence relation |= over EqL. The notions
of finitarity and substitution invariance have analogues for closure operators
and lattices of theories. We discuss the connections between consequence
relations, closure operators and lattices of theories in a more general setting
in Section 3.

The following characterization of algebraizability of a deductive system is
proved in [2].

Theorem 2.4. [2] A deductive system 〈L,⊢〉 is algebraizable with equivalent
algebraic semantics a quasivariety K iff there exists an isomorphism between
Th⊢ and Th|=K

that commutes with inverse substitutions.

We will extend this result in a more general setting and provide a cate-
gorical reason for its validity.

2.2. Consequence relations on sets of sequents. In this section, we
consider one more example of a consequence relation.

If m,n are non-negative integers (not both equal to zero), by a (multiple
conclusion, associative) sequent over L of type (m,n), we understand a pair
(Γ,∆) of a sequence Γ = (φ1, φ2, . . . , φm) of L-formulas of length m and a
sequence ∆ = (ψ1, ψ2, . . . , ψn) of L-formulas of length n. We usually write
φ1, φ2, . . . , φm ⇒ ψ1, ψ2, . . . , ψn for (Γ,∆). These sequents are used in the
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formulation of substructural logics over FL; see, for example, [9]. Variants
of this notion of sequent have been considered in the literature; refer to [11],
[1], [7], and Section 5.

We usually consider sets of sequents closed under type, i.e., sets of sequents
such that, for all m,n, if they contain an (m,n)-sequent, then they contain
all (m,n)-sequents. If Seq is a set of sequents closed under type, then
Tp(Seq) denotes the set of all types of the sequents in Seq.

The set of formulas can be identified with the set of all (0, 1)-sequents,
and the set of equations can be identified with the set of all (1, 1)-sequents.

If s = φ1, φ2, . . . , φm ⇒ ψ1, ψ2, . . . , ψn is a sequent and σ ∈ ΣL is a sub-
stitution, (σ(φ1), σ(φ2), . . . , σ(φm) ⇒ σ(ψ1), σ(ψ2), . . . , σ(ψn)) is denoted by
σ(s). If Seq is a set of sequents closed under type, then a (finitary, substi-
tution invariant) consequence relation over Seq is defined as in the case of
FmL and EqL.

The notion of algebraizability of a set Seq of sequents closed under type
has been defined by Rebagliato and Verdú [15]. If Seq1 and Seq2 are sets
of sequents over L closed under type, and ⊢1 and ⊢2 are two consequence
relations over Seq1 and Seq2, respectively, a translation between Seq1 and
Seq2 is a set τ = {τ (m,n) | (m,n) ∈ Tp(Seq1)}, where τ (m,n) is a finite
subset of Seq2 in (at most) m + n variables. If s ∈ Seq1 is an (m,n)-
sequent, τ (s) = τ (m,n)(s) denotes the result of replacing the m+n formulas
of s for the variables in τ (m,n).

Two consequence relations ⊢1 and ⊢2 over Seq1 and Seq2, respectively,
are called equivalent in the sense of Rebagliato and Verdú, if there are trans-
lations τ and ρ between Seq1 and Seq2 such that for all subsets S1 ∪ {s1}
of Seq1 and all subsets S2 ∪ {s2} of Seq2,

(1) S1 ⊢1 s1 iff τ [S1] ⊢2 τ (s1), and
(2) s2 ⊣⊢2 τρ(s2).

It follows that

(3) S2 ⊢2 s2 iff ρ[S2] ⊢1 ρ(s2), and
(4) s1 ⊣⊢1 ρτ (s1).

Lemma 2.5. Consider maps τ : P(Seq1) → P(Seq2) and ρ : P(Seq2) →
P(Seq1). The following are equivalent.

(1) The maps τ , ρ are finitary, substitution invariant and preserve unions.
(2) There exist translations τ and ρ between Seq1 and Seq2 such that

τ(s1) = τ (s1) and ρ(s2) = ρ(s2) for all s1 ∈ Seq1 and s2 ∈ Seq2.

Proof. The proof is based on the ideas in the proof of Lemma 2.1. The
lemma is also a consequence of more general results that we prove later; see
Theorem 5.13. �
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It will follow from our analysis that the analogue of Theorem 2.4 holds
in the case of sequents, as well. A. Pynko [13] proves the result for finitary
consequence relations and J. Raftery [14] for the general case of associative
sequents.

Example 2.6. An single conclusion, associative, commutative sequent on
a set A is a pair (Γ, φ), where Γ ∪ {φ} is a multiset on A; traditionally, the
sequent (Γ, φ) is denoted by Γ ⇒ φ. We denote by SeqIac(A) the set of all
single conclusion, associative, commutative sequents on A. The deducibility
relation ⊢

FLei
{→} of the {→}-fragment FLei

{→} of the system FLei – see [11]

for details – is the least structural consequence relation on SeqIac(Fm{→})
that satisfies the following conditions for all Γ,Π,Σ ∪ {α, β, δ} ⊆ Fm{→}.

α⇒ α
(id)

Γ ⇒ α Σ, α,Π ⇒ δ

Σ,Γ,Π ⇒ δ
(cut)

Γ,Σ ⇒ δ

Γ, α,Σ ⇒ δ
(i)

Γ ⇒ α Π, β,Σ ⇒ δ

Π,Γ, α→ β,Σ ⇒ δ
(→⇒)

α,Γ ⇒ β

Γ ⇒ α→ β
(⇒→)

Here we adopt the convention that the fraction notation S
s

means S ⊢
FLei

{→}

s, where S ∪ {s} is a subset of SeqIac(Fm{→}).
It is shown in [11] that ⊢

FLei
{→} is equivalent in the sense of Rebagliato

and Verdú to ⊢BCK ; see Example 2.3. Moreover, the consequence relation
⊢

FLe
{→} , obtained by removing Rule (i) from FLei

{→}, is equivalent in the
sense of Rebagliato and Verdú to the consequence relation ⊢BCI , which is
obtained from ⊢BCK by removing Axiom (K). Nevertheless, the relations
⊢

FLe
{→} and ⊢BCI are not algebraizable; see [2]. �

2.3. Consequence relations on powersets. So far we have defined con-
sequence relations on the sets P(FmL), P(EqL) and, more generally, on
P(Seq), where Seq is a set of sequents closed under type. Before we give
the general definition in the case of complete lattices, we give a preview in
the case of powersets. Our presentation is based on ideas developed in [3].

The definition of a (finitary) consequence relation for the three examples
is a special case of the following well known definition.

Let S be a set. An asymmetric consequence relation over S is a subset ⊢
of P(S) × S such that, for all subsets X ∪ Y ∪ {x, y, z} of S,

(1) if x ∈ X, then X ⊢ x, and
(2) if X ⊢ y, for all y ∈ Y , and Y ⊢ z, then X ⊢ z.

An asymmetric consequence relation over S is called finitary, if for all subsets
X∪{x} of S, if X ⊢ x, then there is a finite subsetX0 of X such that X0 ⊢ x.

A symmetric consequence relation over S is a binary relation ⊢ on P(S)
that satisfies, for all X,Y,Z ∈ P(S),

(1) if Y ⊆ X, then X ⊢ Y
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(2) if X ⊢ Y and Y ⊢ Z, then X ⊢ Z.
(3) X ⊢

⋃
X⊢Y Y .

Note that ⊢ satisfies the first two conditions iff it is a pre-order on P(S)
that contains the relation ⊇. A symmetric consequence relation over S is
called finitary, if for all X,Y ∈ P(S), if X ⊢ Y and Y is finite, then there is
a finite subset X0 of X such that X0 ⊢ Y .

Given an asymmetric consequence relation ⊢, we define its symmetric
counterpart ⊢s, by X ⊢s Y , for X,Y ∈ P(S), to mean X ⊢ y, for all
y ∈ Y . Conversely, given a symmetric consequence relation ⊢, we define
its asymmetric counterpart ⊢a, by X ⊢a x iff X ⊢ {x}, for X ∈ P(S) and
x ∈ S. It is well known that asymmetric consequence relations are equivalent
to symmetric ones and the notions of finitarity and invariance that we will
define, correspond. We will work with symmetric consequence relations, as
they are amenable to generalization to arbitrary lattices.

The generalization of the notion of substitution invariance to arbitrary
powersets requires a new notion of substitution. Note that the monoid of
substitutions ΣL acts on both FmL and EqL – more generally on a set Seq
of sequents over L closed under type – in the sense that for all σ1, σ2 ∈ ΣL,
and s in either FmL, EqL or Seq,

(1) (σ1σ2)(s) = σ1(σ2(s))
(2) IdΣL

(s) = s.

We say that a monoid Σ = 〈Σ, ·, e〉 acts on a set S, if there exists a map
⋆ : Σ × S → S such that for all σ1, σ2 ∈ Σ, and s ∈ S,

(1) (σ1 · σ2) ⋆ s = σ1 ⋆ (σ2 ⋆ s)
(2) e ⋆ s = s.

A consequence relation ⊢ on P(S) is called Σ-invariant, if for allX∪{y} ⊆
S and σ ∈ Σ, X ⊢ y implies {σ ⋆ x | x ∈ X} ⊢ σ ⋆ y.

Actually, if Σ acts on S, then P(Σ) acts on P(S), as well, i.e., there
exists a map ⋆ : P(Σ) × P(S) → P(S) such that for all A1, A2 ∈ P(Σ) and
X ∈ P(S),

(1) (A1 ·A2) ⋆ X = A1 ⋆ (A2 ⋆ X)
(2) {e} ⋆ X = X,

whereA1⋆X = {a⋆x|a ∈ A1, x ∈ X} andA1·A2 = {a1·a2|a1 ∈ A1, a2 ∈ A2}.
In this case, ⊢ on P(S) is called P(Σ)-invariant, if for all X,Y ∈ P(S) and
A ∈ P(Σ), X ⊢ Y implies A ⋆ X ⊢ A ⋆ Y .

Moreover, for all A ∈ P(Σ) and X,Y ∈ P(S) we have

A ⋆X ⊆ Y iff A ⊆ Y/⋆ X iff X ⊆ A \⋆ Y ,

where

Y/⋆ X = {a ∈ Σ | {a} ⋆ X ⊆ Y } and A \⋆ Y = {x ∈ S |A ⋆ {x} ⊆ Y };

equivalently ⋆ preserves arbitrary unions. If all of the above conditions
are satisfied, we say that P(S) is a P(Σ)-module. For example P(FmL),
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P(EqL) and P(SeqL), where Seq is a set of sequents closed under type, are
all P(ΣL)-modules.

A map τ : P(S1) → P(S2) is called P(Σ)-invariant or structural, if for
all A ∈ P(Σ) and X ∈ P(S), we have A ⋆ τ(X) = τ(A ⋆ X).

Assume that S1 and S2 are sets, and that ⊢1 and ⊢2 are consequence
relations on P(S1) and P(S2), respectively. Further, assume that there
exist maps τ : P(S1) → P(S2) and ρ : P(S2) → P(S1) that preserve unions
such that for every subset X ∪ {x} of S1 and y ∈ S2,

(1) X ⊢1 x iff τ(X) ⊢2 τ(x),
(2) y ⊣⊢2 τρ(y).

Then we say that ⊢1 and ⊢2 are similar via τ and ρ. We will show in
Lemma 4.5 that, in this case, ⊢2 and ⊢1 are similar via ρ and τ , as well.

Assume further that Σ is a monoid and that P(S1) and P(S2) are P(Σ)-
modules. If ⊢1 and ⊢2 are similar via τ and ρ, and both τ and ρ are
P(Σ)-invariant, then we say that ⊢1 and ⊢2 are equivalent via τ and ρ.

It is easy to see that a consequence relation ⊢ on P(Seq), where Seq
is a set of L-sequents closed under type, is algebraizable in the sense of
Rebagliato and Verdú (or in the sense of Blok and Pigozzi in the case when
Seq = FmL) iff there exists a class K of L-algebras such that ⊢ and |=K are
equivalent via finitary, P(ΣL)-invariant maps τ : P(Seq) → P(EqL) and
ρ : P(EqL) → P(Seq) that preserve unions.

3. Consequence relations, theories and closure operators on

modules

In this section we introduce the notion of a consequence relation on an
arbitrary complete lattice, and show that consequence relations on a given
lattice are in bijective correspondence with closure operators on it. Next
we discuss the appropriate notion of substitution invariance for both con-
sequence relations and for closure operators in the setting where the lattice
is endowed with the additional structure of a module. This will provide
the required background for formulating the definition of equivalence of two
consequence relations and to prove our main theorem.

3.1. Consequence relations. Symmetric consequence relations are binary
relations on the powerset of a set. We generalize their definition to complete
lattices. We note that the definitions and results of this section extend easily
to arbitrary posets.

Let P be a complete lattice. A (symmetric) consequence relation on P

is a binary relation ⊢ on P that satisfies the following conditions, for all
x, y, z ∈ P.

(1) if y ≤ x, then x ⊢ y
(2) if x ⊢ y and y ⊢ z, then x ⊢ z
(3) x ⊢

∨
x⊢y y, for all x ∈ P
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Note that ⊢ satisfies the first two conditions iff it is a pre-order on P that
contains the relation ≥.

3.2. Residuated maps on complete lattices. Let S1, S2 be arbitrary
sets, and let ⊢1, ⊢2 be consequence relations on P(S1) and P(S2), respec-
tively. We have seen that the maps τ : P(S1) → P(S2) and
ρ : P(S2) → P(S1) involved in the definition of similarity of ⊢1 and ⊢2

were assumed to preserve unions. We have noted that this is a necessary
and sufficient condition for these maps to extend maps from the sets S1

and S2 to the powersets P(S1) and P(S2) respectively. The generalization
of this notion in the setting of complete lattices is that of a map that pre-
serves arbitrary joins. We will find it convenient, however, to work with the
equivalent concept of a residuated map.

Let P and Q be complete lattices. A map τ : P → Q is called residuated,
if there exists a map τ∗ : Q → P , called the residual of τ , such that for all
x ∈ P and y ∈ Q,

τ(x) ≤ y ⇔ x ≤ τ∗(y).

Note that a binary map is residuated, in the sense of the previous subsection,
if and only if all its unary translates (sections) are residuated in the preceding
sense. We will often write τ : P → Q for τ : P → Q, to indicate the
dependency of the residuation property on the order structure of P and Q.
It is clear that the residual of a residuated map is uniquely defined by

τ∗(y) = max{x ∈ P | τ(x) ≤ y}.

We will always denote it by τ∗. The following lemma states well known facts
from residuation theory; for example, see [6], [4].

Lemma 3.1. Assume that τ : P → Q and ρ : Q → R are residuated maps.

(1) τ preserves all arbitrary joins in P and τ∗ preserves all arbitrary
meets in Q.

(2) ττ∗ ≤ IQ and τ∗τ ≥ IP .
(3) The composition ρτ is residuated, as well, with residual (ρτ)∗ = τ∗ρ∗.

We note again that for complete lattices P and Q, τ : P → Q is residuated
iff it preserves arbitrary joins.

Example 3.2. Let A and B be sets and let R ⊆ A×B be a binary relation
from A to B. The map τR : P(A) → P(B), defined by τR(X) = R[X] =
{y ∈ B |R(x, y), for some x ∈ X}, is residuated and its residual is given by
(τR)∗(Y ) = R−1[Y ] = {x ∈ A |R(x, y), for some y ∈ Y }. �

Note that if τ : A → P(B) is defined by τ(x) = {y | (x, y) ∈ R}, then
τR : P(A) → P(B) is what we called τ ′ in Section 2.1.
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3.3. Closure operators. Recall that a closure operator γ on a complete
lattice P is an expanding (x ≤ γ(x)), monotone (x ≤ y ⇒ γ(x) ≤ γ(y)) and
idempotent (γ(γ(x)) = γ(x)) map on P ; an interior operator γ on P is an
contracting (γ(x) ≤ x), monotone and idempotent map on P . If γ : P → P
is a map, we denote by Pγ the image γ[P ] of P under γ and by Pγ the
subposet of P with carrier Pγ . The elements of Pγ are known as the fixed
points of γ or the γ-closed elements of P.

A subset Q of P is said to be completely meet-closed, if whenever X ⊆ Q,
then

∧PX ∈ Q. We define γQ(x) =
∧P(↑x ∩Q).

The following is in the folklore of the area and can be found in [6], [4].

Lemma 3.3. Let P be a complete lattice, γ be a closure operator on P and
Q a completely meet-closed subset of P. Then the following hold.

(1) Pγ is a completely meet-closed subset of P.
(2) γQ is a closure operator on P.
(3) γPγ = γ and PγQ

= Q.
(4) Pγ is a complete lattice, and a complete meet-subsemilattice of P,

with join
∨Pγ γ[X] = γ(

∨P γ[X]) = γ(
∨PX) and meet

∧Pγ γ[X] =
∧P γ[X].

It is easy to see that γ : P → P is a closure operator on P iff the map
γ′ : P → Pγ , defined by γ′(x) = γ(x), for all x ∈ P , is residuated and the
inclusion map InPγ : Pγ → P is its residual. We will often identify γ and
γ′, with the understanding that only γ′ is residuated and only γ is a closure
operator.

Note that, in view of Lemma 3.3, γ : P → Pγ preserves arbitrary joins.
Also, closure operators are determined by their fixed points.

Lemma 3.4. Assume that τ : P → Q is a residuated map between the
complete lattices P and Q.

(1) τ∗τ is a closure operator on P and ττ∗ is an interior operator on Q.
(2) ττ∗τ = τ and τ∗ττ∗ = τ∗.
(3) Pτ∗τ is isomorphic to Qττ∗.

If f and g are both maps from P to Q, we write f ≤ g, if f(x) ≤ g(x) for
all x ∈ P . It is obvious that if h is a map from Q to a complete lattice R

and k is a monotone map from a poset T to P, then f ≤ g implies fh ≤ gh
and kf ≤ kg. Note that if γ is a closure operator on P and δ is an interior
operator on P, then δ ≤ IP ≤ γ, where IP is the identity map on P .

Given a consequence relation ⊢ on a complete lattice P, we define the map
γ⊢ : P → P , by γ⊢(x) =

∨
x⊢y y. Also given a closure operator γ : P → P ,

we define the binary relation ⊢γ on P , by x ⊢γ y iff y ≤ γ(x).

Lemma 3.5. Consequence relations on a complete lattice P are in bijective
correspondence with closure operators on P via the maps ⊢ 7→ γ⊢ and
γ 7→ ⊢γ.
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3.4. Theories. As we have seen closure operators and consequence relations
are interdefinable. Also, the properties of being structural and finitary (to
be defined later) are preserved under this correspondence. Here we discuss
yet another way of looking at the same properties.

Let ⊢ be a consequence relation on a complete lattice P. An element t of
P is called a theory of ⊢ if t ⊢ x implies x ≤ t. Note that if t is a theory,
then x ≤ t and x ⊢ y imply y ≤ t. We denote the set of theories of ⊢ by
Th⊢.

Lemma 3.6. If ⊢ is a consequence relation on the complete lattice P, then
Th⊢ = Pγ⊢ .

Proof. Let t ∈ Th⊢ and set γ = γ⊢. We will show that t ∈ Pγ , i.e., that
γ(t) = t. We have γ(t) ≤ γ(t), so t ⊢ γ(t). Since t is a theory, γ(t) ≤ t. The
other inequality holds because γ is extensive.

Conversely, assume that γ(t) = t, and let x ∈ P such that t ⊢ x. Then
x ≤ γ(t) = t. �

We define the lattice of theories Th⊢ of ⊢ to be the complete lattice Pγ⊢ .
Lemma 3.3 shows that the lattices of theories can be characterized abstractly
and from it we can recover the corresponding consequence relation or closure
operator.

3.5. Modules over complete lattices and invariance under the ac-

tion. To define substitution invariance of a consequence relation on a com-
plete lattice, we need to assume that the latter is endowed with a module
structure. Therefore we define modules in the case of arbitrary complete
lattices.

Let A, B and C be complete lattices. A map ⋆ : A×B → C (viewed as a
binary map) is called residuated provided there exist maps \⋆ : A×C → B
and /⋆ : C×B → A, called the residuals of ⋆, such that for all x ∈ A, y ∈ B
and z ∈ C,

x ⋆ y ≤ z ⇔ x ≤ z/⋆ y ⇔ y ≤ x \⋆ z.

A residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, 1〉 such that 〈A,∧,∨〉
is a lattice, 〈A, ·, 1〉 is a monoid, and the operation · is residuated with
residuals \ and /.

Let A be a complete residuated lattice, P a complete lattice and
⋆ : A × P → P a map. We say that 〈P, ⋆〉 is a (left) A-module, or a
(left) module over A, if for all x ∈ P and a, b ∈ A,

(M1) 1 ⋆ x = x,
(M2) a ⋆ (b ⋆ x) = ab ⋆ x, and
(M3) ⋆ is residuated (we denote the residuals by \⋆ and /⋆ ).

In what follows we will often suppress ⋆ in 〈P, ⋆〉, and simply write P instead.
Clearly, A is itself an A-module. We assume that ⋆ has priority over the
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division operations \⋆ and /⋆ ; so a ⋆ x/⋆ y is short for (a ⋆ x)/⋆ y. In the
expressions y\⋆x and x/⋆ y, x is called the numerator and y the denominator

Note that if P = P(S), then we obtain the notion of a module for power-
sets.

Let P, Q be A-modules. A map τ : P → Q is called structural if a⋆τ(x) =
τ(a⋆x), for all x ∈ P and a ∈ A. Obviously, structural maps on the P(ΣL)-
modules of the previous sections are exactly the substitution invariant maps.

A module morphism τ : P → Q from P to Q is a structural residuated
map. We will often use the term translator for such a morphism. For a
fixed complete residuated lattice A, we will denote by AM the category of
all A-modules and module morphisms (translators).

Lemma 3.7. The following properties hold for every A-module 〈P, ⋆〉, a ∈
A and x, y ∈ P .

(1) The operation ⋆ preserves arbitrary joins in both coordinates. In
particular, it is order-preserving in both coordinates.

(2) The operations \⋆ and /⋆ preserve arbitrary meets in the numera-
tor; moreover, they convert arbitrary joins in the denominator into
meets. In particular, they are both order-preserving in the numerator
and order reversing in the denominator.

(3) (x/⋆ y) ⋆ y ≤ x
(4) a ⋆ (a \⋆ x) ≤ x
(5) x ≤ a \⋆ (a ⋆ x) and a ≤ (a ⋆ x)/⋆ x
(6) (a \⋆ x)/⋆ y = a\(x/⋆ y)
(7) [(x/⋆ y) ⋆ y]/⋆ y = x/⋆ y
(8) 1 ≤ x/⋆ x
(9) (x/⋆ x) ⋆ x = x

The proof of the lemma is a straightforward application of the definitions
and is therefore omitted. Note that some of the above (in)equalities are in
P, like the first in item (5), and some are in A, like the second of item (5).
We use the same symbol ≤ for inequality in both A and in P and rely on
the context telling them apart.

A consequence relation ⊢ on the A module P is called structural, if x ⊢ y
implies a ⋆ x ⊢ a ⋆ y, for all x, y ∈ P and a ∈ A.

Note that in the case where P = P(S) the notions of structurality and of
substitution invariance of a consequence relation coincide.

A closure operator on an A-module P is called structural, if the corre-
sponding consequence relation is structural; i.e., a ⋆ γ(x) ≤ γ(a ⋆ x), for all
x ∈ P and a ∈ A. Note that Lemma 3.9 below reconciles the two notions of
structurality for a closure operator γ : P → P that is viewed as a residuated
map γ : P → Pγ .
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We give four more characterizations of a structural closure operator on a
module.

Lemma 3.8. Let P be an A-module and let γ be a closure operator on P.
The following are equivalent

(1) γ is structural.
(2) γ(a ⋆ γ(x)) = γ(a ⋆ x), for all a ∈ A and x ∈ P .
(3) γ(x)/⋆ y = γ(x)/⋆ γ(y), for all x, y ∈ P .
(4) γ(a \⋆ x) ≤ a \⋆ γ(x), for all a ∈ A and x ∈ P .
(5) a\⋆γ(x) ∈ Pγ , for all a ∈ A and x ∈ P .

Proof. It is clear that (1) is equivalent to (2). To show that (1) implies (3),
let x, y ∈ P . The inequality γ(x)/⋆ γ(y) ≤ γ(x)/⋆ y follows from the fact that
y ≤ γ(y). For the reverse inequality, by the structurality of γ, we have

[γ(x)/⋆ y] ⋆ γ(y) ≤ γ([γ(x)/⋆ y] ⋆ y) ≤ γ(γ(x)) = γ(x);

we used Lemma 3.7(3) and the monotonicity of γ. So γ(x)/⋆ y ≤ γ(x)/⋆ γ(y).
For the converse implication, let a ∈ A and x ∈ P . Since a ⋆ x ≤ γ(a ⋆ x),

we have a ≤ γ(a ⋆ x)/⋆ x = γ(a ⋆ x)/⋆ γ(x). Thus, a ⋆ γ(x) ≤ γ(a ⋆ x).

For the equivalence of (1) and (4), let a ∈ A and x ∈ P . We have
a⋆γ(a\⋆x) ≤ γ(a⋆(a\⋆x)) ≤ γ(x), by Lemma 3.7(4). Conversely, a⋆γ(x) ≤
a ⋆ γ(a \⋆ a ⋆ x) ≤ a ⋆ [a \⋆ γ(a ⋆ x)] ≤ γ(a ⋆ x), by Lemma 3.7(5,4).

To show that (1) implies (5), let a ∈ A and x ∈ P . It suffices to show
that γ(a \⋆ γ(x)) ≤ a \⋆ γ(x); i.e., a ⋆ γ(a \⋆ γ(x)) ≤ γ(x). Indeed,

a ⋆ γ(a \⋆ γ(x)) ≤ γ(a ⋆ (a \⋆ γ(x))) ≤ γ(γ(x)) ≤ γ(x).

For the converse implication, let a ∈ A and x ∈ P . Since a ⋆ x ≤ γ(a ⋆ x),
we have x ≤ a\⋆γ(a⋆x). By the hypothesis, it follows that γ(x) ≤ a\⋆γ(a⋆x),
hence a ⋆ γ(x) ≤ γ(a ⋆ x). �

Lemma 3.9. Let P be an A-module and let γ be a structural closure operator
on P. Then 〈Pγ , ⋆γ〉 is an A-module, where ⋆γ : A × Pγ → Pγ is the map
defined by a ⋆γ x = γ(a ⋆ x). As usual, we write Pγ for 〈Pγ , ⋆γ〉. Moreover,
γ : P → Pγ is a module morphism.

Proof. It is clear that the first two conditions in the definition of a module
are satisfied. To show that ⋆γ is residuated, note that for all a ∈ A and
x, y ∈ Pγ , we have

a ⋆γ x ≤ y ⇔ γ(a ⋆ x) ≤ y ⇔ a ⋆ x ≤ y ⇔ x ≤ a \⋆ y.

By Lemma 3.8(5), a \⋆ y ∈ Pγ , so ⋆γ is left residuated with left division \γ

the restriction of \⋆ to Pγ .
Furthermore, we have

a ⋆γ x ≤ y ⇔ γ(a ⋆ x) ≤ y ⇔ a ⋆ x ≤ y ⇔ a ≤ y/⋆ x.

Thus, ⋆γ is right residuated and /γ is the restriction of /⋆ to Pγ .
The fact that γ : P → Pγ is a module morphism follows from the defini-

tion of ⋆γ and the fact that γ is residuated. �
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Remark 3.10. Condition (5) of Lemma 3.8, in the special case of P(ΣL)-
modules, states that the lattice of theories is closed under inverse substitu-
tions. Indeed, if P = P(S), where S is the set of formulas, equations or
sequents, then Pγ is the lattice of theories of ⊢γ . Note that condition (5),
for a a set of substitutions, is equivalent to its restriction, where a ranges
only over singletons, by Theorem 3.7(2). So, condition (5) is equivalent to
the statement that {σ} \⋆ T = σ−1[T ] is a theory, for every substitution
σ and theory T , namely that the set of theories is closed under inverse
substitutions.

It follows from the proof of Lemma 3.9 that, for all a ∈ A, the map
x 7→ a ⋆γ x on Pγ is residuated and x 7→ a \⋆ x is its residual. As a map and
its residual determine each other uniquely, one can enrich the lattice Pγ of
theories with either type of maps. We opted for adding the first type of maps
(namely adding a module structure). This is the opposite but equivalent to
the choice made in [2], where the lattice of theories is enriched with inverse
substitutions, which correspond to adding the residual maps, as discussed
above. �

4. Similarity and equivalence of two consequence relations

In this section we define the notions of representation, similarity and
equivalence between two closure operators or two consequence relations.
Our development generalizes the corresponding notions in [3].

4.1. Representation. Let γ and δ be closure operators on the complete
lattices P and Q, respectively. A representation of γ in δ is a residuated
order embedding f : Pγ → Qδ; i.e., a residuated map satisfying x ≤ y iff
f(x) ≤ f(y), for all x, y ∈ Pγ . (Equivalently, a representation can be defined
as a residuated and one-to-one mapping, as such a mapping is automatically
an order-embedding.) Clearly, if R and S are completely meet-closed subsets
of the complete lattices P and Q, respectively, we define a representation
of R in S to be a residuated order embedding f : R→ S. A representation
f : Pγ → Qδ of γ in δ is said to be induced by the residuated map τ : P → Q,
if fγ = δτ .

P
τ //

γ
����

Q

δ
����

Pγ
f // Qδ

In view of the correspondence between consequence relations and closure
operators, we will denote an arbitrary consequence relation on a poset P by
⊢γ with the understanding that γ is the associated closure operator.

We say that a consequence relation ⊢γ is represented in the consequence
relation ⊢δ if the associated closure operator γ is represented in δ; the rep-
resentation of ⊢γ in ⊢δ is induced by a residuated map τ : P → Q, if
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the representation of the corresponding closure operators is induced by τ .
Corollary 4.4 shows that ⊢γ is represented in ⊢δ via τ if and only if for all
x, y ∈ P ,

x ⊢γ y iff τ(x) ⊢δ τ(y).

Lemma 4.1. Let P and Q be complete lattices, τ : P → Q be a residuated
map and δ a closure operator on Q.

(1) The map δτ = τ∗δτ : P → P is a closure operator on P.
(2) If P and Q are A-modules, and τ and δ are structural then so is δτ .

Proof. Note that δ : Q → Qδ is residuated with residual the inclusion map
InQδ

, so δτ : P → Qδ is residuated, as well, with residual τ∗InQδ
= τ∗|Qδ

,

by Lemma 3.1(3).

P
τ //

Q

δ
����

τ∗
oo

Qδ

τ∗|Qδ

``@@@@@@@@
?�

OO

Therefore, δτ = τ∗δτ = τ∗|Qδ
δτ : P → P is a closure operator on P.

For all a ∈ A and x ∈ P , by using Lemma 3.1(2), we have

τ(a⋆δτ (x)) = a⋆τδτ (x) = a⋆ττ∗δτ(x) ≤ a⋆δτ(x) ≤ δ(a⋆τ(x)) = δτ(a⋆x),

so a ⋆ δτ (x) ≤ τ∗δτ(a ⋆ x) = δτ (a ⋆ x). �

We will call δτ the τ -transform of δ. Similarly, we can define the τ -
transform of a consequence relation ⊢ on Q to be the relation ⊢τ on P defined
by x ⊢τ y iff τ(x) ⊢ τ(y), for all x, y ∈ P . Also, we define the τ -transform
of a completely meet-closed subset R of Q to be the subposet τ−1[R] of P.
The following lemma shows that the τ -transform of a consequence relation
(completely meet-closed subset) is a consequence relation (completely meet-
closed subset, respectively) and the associated closure operator is the τ -
transform of the original relation (meet-closed subset, respectively).

Lemma 4.2. Let P and Q be complete lattices, τ : P → Q a residuated
map and γ, δ closure operators on P and Q, respectively. The following
statements are equivalent

(1) γ = δτ

(2) for all x, y ∈ P , x ⊢γ y iff τ(x) ⊢δ τ(y).
(3) Pγ = τ∗[Qδ]

Proof. Assume (1) holds; then for all x, y ∈ P , we have x ⊢δτ y iff y ≤
τ∗δτ(x) iff τ(y) ≤ δτ(x) iff τ(x) ⊢δ τ(x). Conversely, for all x, y ∈ P , we
have y ≤ γ(x) iff x ⊢γ y iff τ(x) ⊢δ τ(y) iff τ(y) ≤ δτ(x) iff y ≤ τ∗δτ(x).
Consequently, γ = δτ .

For the equivalence of (1) and (3), first note that x ∈ τ∗[Qδ] iff x =
τ∗(δ(z)), for some z ∈ Q. We claim that this is further equivalent to δτ (x) =
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x. Indeed, the backward direction follows by choosing z = τ(x). For the
forward direction, we have δτ (x) = δτ (τ∗(δ(z))) = τ∗δττ∗δ(z) ≤ τ∗δδ(z) =
τ∗δ(z) = x. We have shown that τ∗[Qδ] = Pδτ . Therefore, (3) claims
that Pγ = Pδτ , namely that γ and δτ have the same fixed elements. By
Lemma 3.3, this is equivalent to γ = δτ . �

Lemma 4.3. Let P and Q be complete lattices, τ : P → Q a residuated
map, and δ a closure operator on Q.

(1) The map f = δτ|Pδτ
: Pδτ → Qδ is residuated with residual f∗ =

τ∗|Qδ
= δτ τ∗|Qδ

: Qδ → Pδτ .

(2) f is a representation of δτ in δ induced by τ .
(3) δτ is the only closure operator on P that is represented in δ under a

representation induced by τ .
(4) If P and Q are A-modules, τ : P → Q is a module morphism and δ

is a structural closure operator on Q, then f is structural.

Proof. (1) We first show that τ∗|Qδ
= δτ τ∗|Qδ

. Indeed, IP ≤ δτ , since δτ

is a closure operator on P, so τ∗|Qδ
≤ δττ∗|Qδ

. Conversely, ττ∗ ≤ IQ,

by Lemma 3.1(2), so ττ∗InQδ
≤ IQInQδ

, that is ττ∗|Qδ
≤ InQδ

. By the

monotonicity of τ∗δ, we have τ∗δττ∗|Qδ
≤ τ∗δInQδ

; i.e., δτ τ∗|Qδ
≤ τ∗|Qδ

.

P
τ //

δτ

����

Q

δ
����

τ∗
oo

Pδτ

f //?�

OO

Qδ

?�

OO

f∗

oo

Recall that δτ : P → Qδ is residuated with residual τ∗|Qδ
. For all x ∈ Pδτ

and y ∈ Qδ, we have

f(x) ≤ y ⇔ δτ(x) ≤ y ⇔ x ≤ τ∗|Qδ
(y) = δτ τ∗|Qδ

(y).

Since the range of δτ τ∗|Qδ
is in Pδτ , it follows that f is residuated and its

residual is f∗ = δτ τ∗|Qδ
.

(2) Since f is residuated with residual f∗, both f and f∗ preserve order.
To show that f is a representation it suffices to show that it reflects the
order. Note that

f∗f = τ∗|Qδ
δτ|Pδτ

= τ∗IQδ
δτIPδτ = τ∗δτIPδτ = δτ IPδτ = IPδτ .

Now, for all x, y ∈ Pδτ , if f(x) ≤ f(y), then f∗f(x) ≤ f∗f(y), so x ≤ y.
Moreover fδτ = δτ|Pδτ

δτ = δτInPδτ δ
τ = δτδτ = δτ . The last equal-

ity holds because δτ ≤ δτδτ (since δτ is a closure operator) and δτδτ =
δττ∗δτ ≤ δδτ = δτ (since ττ∗ is an interior operator). Consequently, f is
induced by τ .

(3) Let γ be a closure operator on P that is represented in δ by a repre-
sentation f induced by τ . We will show that γ = δτ .
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P
τ //

γ
����

Q

δ
����

Pγ
f // Qδ

Since γ is a closure operator on P, we have γ∗ = InPγ , so γ∗γ = γ; for
the same reason, we have δ∗δ = δ. Consequently, by Lemma 3.1(3),

δτ = τ∗δτ = τ∗δ∗δτ = (δτ)∗δτ = (fγ)∗fγ = γ∗γ = γ

The equation (fγ)∗fγ = γ∗γ follows directly from the fact that f is order
reflecting, since x ≤ (fγ)∗fγ(y) iff fγ(x) ≤ fγ(y) iff γ(x) ≤ γ(y) iff x ≤
γ∗γ(y), for all x, y ∈ P .

(4) For all a ∈ A and x ∈ Pδτ , we have f(a ⋆Pδτ x) = fδτ (a ⋆P x) =
δτ(a ⋆P x) = δ(a ⋆Q τ(x)) = δ(a ⋆Q δτ(x)) = a ⋆Qδ

δτ(x) = a ⋆Qδ
f(x). �

Corollary 4.4. Let P and Q be complete lattices, and let ⊢γ and ⊢δ be
consequence relations on P and Q, respectively. Then, ⊢γ is represented in
⊢δ via a residuated map τ : P → Q if and only if for all x, y ∈ P , we have
x ⊢γ y iff τ(x) ⊢δ τ(y).

Proof. The corollary is a direct consequence of Lemma 4.2 and Lemma 4.3(3).
�

It is easy to see that ⊢γ is represented in ⊢δ by f : Th⊢γ → Th⊢δ
means

that f is residuated and for all x, y ∈ P ,

x ⊢γ y iff fγ(x) ⊢δ fγ(y).

Indeed, if ⊢γ is represented in ⊢δ by f , then x ⊢γ y iff y ≤ γ(x) iff
f(y) ≤ f(γ(x)) (since f preserves and reflects order) iff f(y) ≤ δf(γ(x)) iff
fγ(x) ⊢δ fγ(y). Conversely, to show that f reflects order, let fγ(y) ≤ fγ(x).
Then fγ(y) ≤ δfγ(x), that is, fγ(x) ⊢δ fγ(y); so x ⊢γ y that is γ(y) ≤ γ(x).

4.2. Similarity. Let γ and δ be closure operators on the complete lattices
P and Q, respectively. A similarity between γ and δ is an isomorphism
f : Pγ → Qδ. If there exists a similarity between γ and δ, then γ and δ are
called similar. A similarity f between γ and δ is said to be induced by the
residuated maps τ : P → Q and ρ : Q → P, if fγ = δτ and f−1δ = γρ. In
this case we will say that γ and δ are similar via τ and ρ.

P
τ //

γ
����

Q

δ
����

ρ
oo

Pγ
// f // //

Qδoo
f−1

oooo

It is clear that f is a similarity between γ and δ iff f is a representation of
γ in δ, f is a bijection and f−1 is a representation of δ in γ.
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A consequence relation ⊢γ is called similar to the consequence relation
⊢δ (via a residuated map τ) if γ is similar to δ (via τ).

Lemma 4.5. Let γ and δ be closure operators on the complete lattices P

and Q, respectively, and let τ : P → Q and ρ : Q → P be residuated maps.
The following statements are equivalent.

(1) γ and δ are similar via (a similarity induced by) τ and ρ.
(2) γ = δτ and δτρ = δ.
(3) δ = γρ and γρτ = γ.

Proof. We will show the equivalence of the first two statements; the equiva-
lence of the first to the third will follow by symmetry. The forward direction
follows from Lemma 4.3(3) and the definition of similarity (δτρ = fγρ =
ff−1δ = δ). For the converse, assume that γ = δτ and δτρ = δ. Let f be
the representation of γ = δτ in δ given in Lemma 4.3(1). We have fγ = δτ ,
by Lemma 4.3(2).

P
τ //

γ
����

Q

δ
����

ρ
oo

Pγ

f //
Qδ

f−1

oo_ _ _

To show that f is onto, let y ∈ Qδ and set x = γρ(y) ∈ Pγ . We
have f(x) = fγρ(y) = δτρ(y) = δ(y) = y. Consequently, f is an order-
isomorphism and γ and δ are similar. To show that the similarity f is
induced by τ and ρ, we need only prove that f−1δ = γρ, or equivalently
that δ = fγρ. This is true, because δ = δτρ and fγ = δτ . �

Corollary 4.6. Let P and Q be complete lattices and let ⊢γ and ⊢δ be
consequence relations on P and Q, respectively. Then, ⊢γ is similar to ⊢δ

via the residuated maps τ : P → Q and ρ : Q → P if and only if the
following conditions hold:

(1) for all x, y ∈ P , x ⊢γ y iff τ(x) ⊢δ τ(y); and
(2) for all z ∈ Q, z ⊣⊢δ τρ(z).

Proof. It is easy to see that δτρ = δ iff for all z ∈ Q, z ⊣⊢δ τρ(z). Now, the
corollary follows from of Lemma 4.5(2) and Corollary 4.4. �

4.3. Equivalence. Let P and Q be A-modules and let γ and δ be structural
closure operators on P and Q, respectively. An equivalence between γ and
δ is a module isomorphism f : Pγ → Qδ. Note that an equivalence is
just a structural similarity. Moreover, f−1 is also structural. If such an
isomorphism exists then γ and δ are called equivalent. If the equivalence is
induced by module morphisms τ : P → Q and ρ : Q → P, then γ and δ are
called equivalent via τ and ρ.
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Theorem 4.7. Let P and Q be A-modules and let γ and δ be structural
closure operators on P and Q, respectively. If γ and δ are similar via the
translators (i.e., module morphisms) τ and ρ, then they are equivalent via τ
and ρ.

Proof. It suffices to show that the similarity f of γ in δ is structural. Indeed,
for all a ∈ A and x ∈ Pγ , we have

f(a ⋆γ x) = fγ(a ⋆ x) = δτ(a ⋆ x) = δ(a ⋆ τ(x))
= δ(a ⋆ δτ(x)) = a ⋆δ δτ(x) = a ⋆δ fγ(x)
= a ⋆δ f(x),

since γ(x) = x. �

5. Equivalences induced by translators

Theorem 4.7 shows that every similarity between structural closure op-
erators induced by translators is structural. A natural question to ask is
whether every equivalence of consequence relations is induced by transla-
tors. Example 5.8 shows that this is not always true. Nevertheless, we will
show that this is the case for all standard situations including the powersets
of formulas, equations and sequents.

Having developed the fundamentals of the theory of A-modules and refor-
mulated the isomorphism of the enriched lattices of theories into the setting
of A-modules, we are ready to prove a result that provides the key categor-
ical insight. We will show that the modules in the category AM for which
equivalences are induced by translators coincide with the projective mod-
ules in this category. More specifically, we will prove that an A-module P

is projective iff for any A-module Q and structural closure operators γ and
δ on P and Q respectively, every structural representation f : Pγ → Qδ of
γ in δ is induced by a translator.

5.1. Projective objects. Recall that by AM we denote the category of
A-modules and translators (module morphisms). Every structural closure
operator γ on the A-module P is a translator from P to Pγ . Assume that
P and Q are A-modules, γ and δ are structural closure operators on P and
Q respectively, and f : Pγ → Qδ is a structural representation of γ in δ.
We want to find a translator τ : P → Q that induces f ; i.e., δτ = fγ. In
other words we want a morphism τ in the category AM that completes the
square.

(S) P
τ //___

γ
����

Q

δ
����

Pγ
// f // Qδ

It turns out that the objects P of the category AM for which such square
can be completed are precisely the projective objects of AM. An object
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P of AM is called projective (relative to onto maps), if whenever there are
modules Q and R and module morphisms g : Q → R and k : P → R, with
g onto, then there exists a morphism h : P → Q, such that k = gh.

(T) P
h //___

k ��?
??

??
??

?
Q

g
����

R

Theorem 5.1. The objects P of the category AM for which all squares of
type (S) can be completed are exactly the projective objects of AM.

Proof. Obviously, if P is projective, then the square (S) can be completed,
since we can chose R = Qδ, k = fγ and g = δ in the triangle (T).

Conversely, assume that P is such that every square (S) can be completed
and consider the triangle (T), where h is to be determined.

P
h=τ //________

k∗k

����

k

""D
DD

DD
DD

DD
Q

g∗g

����

g

||||zz
zz

zz
zz

z

R

Pk∗k

==

k′
==zzzzzzzz

// f // Qg∗g

aa

g′
aaaaDDDDDDDD

We know by Lemma 3.4 that k∗k is a closure operator on P and that Pk∗k

is isomorphic to k[P] via the map k′ = k|Pk∗k
. Therefore, the map k factors

as k = k′(k∗k). Likewise, we have g = g′(g∗g), where g′ = g|Qg∗g
. Moreover,

k′ is an embedding and g′ is an isomorphism, so the map f = (g′)−1k′ is an
embedding. Since the outer square can be completed, we have fk∗k = g∗gh,
so g′fk∗k = g′g∗gh, hence k′k∗k = gh; thus k = gh and the upper triangle
commutes. �

5.2. Cyclic Modules. We will show that the P(ΣL)-modules discussed in
Sections 2.2 and 2.3 are projective. Consequently, in view of the preceding
theorem, all equivalences on these modules are induced by translators. More
generally, we will identify a set of intrinsic conditions that describe cyclic
projective modules. The P(ΣL)-modules of formulas and of equations are
cyclic and projective. The P(ΣL)-module of sequents is not cyclic, but we
prove that it is a coproduct of cyclic projective modules, and hence it is
projective.

Let A be a complete residuated lattice. An A-module P is called cyclic,
if there exists an element v ∈ P , called a generator of P, such that P =
A ⋆ v = {a ⋆ v | a ∈ A}.
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Lemma 5.2. An A-module P is cyclic with generator v iff (x/⋆ v) ⋆ v = x,
for all x ∈ P .

Proof. If v is a generator, then for all x ∈ P , there exists an a ∈ A such that
x = a⋆v; so a ≤ (x/⋆ v). We have x = a⋆v ≤ (x/⋆ v)⋆v ≤ x, by Lemma 3.7.
So, (x/⋆ v) ⋆ v = x. The converse, is obvious. �

Recall the construction of the module Pγ , where P is a module and γ a
structural closure operator on P, from Lemma 3.9. Also recall that A itself
is an A-module. From now on we will make use of this structure, which
relies on the residuation of A.

Lemma 5.3. If A is a complete residuated lattice and γ : A→ A is a struc-
tural closure operator, then the A-module 〈Aγ , ·γ〉 is cyclic with generator
γ(1).

Proof. Obviously, γ(1) ∈ Aγ . Also, for all γ(a) ∈ Aγ , a ·γ γ(1) = γ(a · 1) =
γ(a). �

Lemma 5.4. Let 〈P, ⋆〉 be an A-module, v ∈ P and A⋆ v = {a ⋆ v | a ∈ A}.

(1) Then A ⋆ v = 〈A⋆ v, ⋆〉 is an A-module in which joins coincide with
those in P. The residual of the operation ⋆ in A ⋆ v is given by
a\A⋆vq = [(a \⋆ q)/⋆ v] ⋆ v.

(2) The map γv : A → A, defined by γv(a) = a ⋆ v/⋆ v is a structural
closure operator.

(3) A ⋆ v is isomorphic to Aγv .

Consequently, an A-module is cyclic if and only if it is isomorphic to a
module Aγ, for a structural closure operator γ : A → A.

Proof. (1) First note that if a ∈ A and q ∈ A ⋆ v, then q = b ⋆ v, for some
b ∈ A, so a⋆(b⋆v) = ab⋆v ∈ A⋆v. Moreover, if r = c⋆v ∈ A⋆v, where c ∈ A,
then a ⋆ r ≤ q iff a ⋆ (c ⋆ v) ≤ q iff c ≤ (a \⋆ q)/⋆ v iff c ⋆ v ≤ [(a \⋆ q)/⋆ v] ⋆ v.
The last equivalence follows from Lemma 3.7(7).

Clearly,
∨P

i∈I(ai ⋆ v) = (
∨A

i∈I ai) ⋆ v ∈ A ⋆ v. Therefore, A ⋆ v is closed

under
∨P, and is therefore a complete lattice.

(2) We have a ≤ γv(a); if a ≤ b, then γv(a) ≤ γv(b) and γv(γv(a)) = γv(a),
by Lemma 3.7(7). Also, aγv(b) ⋆ v = a[(b ⋆ v)/⋆ v] ⋆ v ≤ a ⋆ (b ⋆ v) = ab ⋆ v,
by Lemma 3.7(3), so aγv(b) ≤ γv(ab). Thus, γv is structural.

(3) Let f(a) = a ⋆ v and g(x) = x/⋆ v. Note that f : Aγv → A ⋆ v and
g : A ⋆ v → Aγv , since f(a) = a ⋆ v ∈ A ⋆ v and g(a ⋆ v) = (a ⋆ v)/⋆ v ∈ Aγv .
For all x ∈ A ⋆ v, we have f(g(x)) = (x/⋆ v) ⋆ v = x, because of cyclicity.
Also, for all a ∈ Aγv , g(f(a)) = γv(a) = a. So, f−1 = g. Moreover, both f
and g are order-preserving, so they are order reflecting as well. �

Corollary 5.5. If A is a complete residuated lattice and u ∈ A, then Au =
〈Au, ·〉 is a cyclic A-module isomorphic to Aγu.

Lemma 5.6. Let A be a complete residuated lattice, γ : A→ A a structural
closure operator and u ∈ A. The following are equivalent.
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(1) γ(u) = γ(1), and γ(a)u = au, for all a ∈ A.
(2) γ = γu and u = u2

Proof. The fact that (2) implies (1) is easy to check. Conversely, from
γ(a)u = au, we obtain γ(a) ≤ au/u = γu(a), for all a ∈ A. Also, from
γ(u) = γ(1), we obtain for all b ∈ A, γ(bu) = b ⋆γ γ(u) = b ⋆γ γ(1) = γ(b1) =
γ(b). We have the following implications.

γu(a)u ≤ au ⇒ γ(γu(a)u) ≤ γ(au) ⇒ γ(γu(a)) ≤ γ(a) ⇒ γu(a) ≤ γ(a)

Moreover, since γ = γu, we have γu(u) = γu(1), so uu/u = u/u, hence
(u2/u)u = (u/u)u. From this we obtain u2 = u, because (u/u)u = u, by
Lemma 3.7(9), and u2 = uu ≤ (u2/u)u ≤ u2, by Lemma 3.7(5,3). �

Theorem 5.7. For an A-module 〈P, ⋆〉, the following conditions are equiv-
alent.

(1) u ⋆ v = v, [(a ⋆ v)/⋆ v]u = au, for all a ∈ A, and P = A ⋆ v, for some
v ∈ P and u ∈ A.

(2) γv(a)u = au, for all a ∈ A, γv(u) = γv(1), and P = A ⋆ v, for some
v ∈ P and u ∈ A.

(3) γv = γu, u
2 = u and P = A ⋆ v, for some v ∈ P and u ∈ A.

(4) P is isomorphic to Au and u2 = u, for some u ∈ A.
(5) P is cyclic and projective.

Moreover, the elements u and v can be taken to be the same in all statements
in which they appear.

Proof. The equivalence (1) ⇔ (2) follows from the fact that γv(u) = γv(1)
iff u ⋆ v/⋆ v = v/⋆ v iff u ⋆ v = v, by using Lemma 3.7. The implication (2)
⇒ (3) follows from the preceding lemma. The implication (3) ⇒ (4) follows
from the facts A ⋆ v ∼= Aγv (Lemma 5.4), Au ∼= Aγu (Corollary 5.5), and
γu = γv. Furthermore,(4) ⇒ (1) follows from the fact that if u2 = u, then
Au satisfies (1) with v = u.

For the equivalence of (4) and (5), note first that every cyclic module
is of the form Aγ for some structural closure operator γ : A → A, by
Lemma 5.4. Suppose Aγ is projective. We will verify condition (4). Since
Aγ is projective, there exists a module morphism f that completes the
diagram below.

Aγ
f //___

Id   B
BB

BB
BB

B
A

γ
����

Aγ

Let u = f(γ(1)). For all a ∈ A, we have γ(a) = γ(a1) = γ(aγ(1)) = a ·γ γ(1),
so f(γ(a)) = a · f(γ(1)) = au. Consequently, f [Aγ ] = Au. Moreover, f is
injective, by the diagram, so Aγ

∼= Au. We will show that u2 = u. Indeed,
u2 = f(γ(1))f(γ(1)) = f(f(γ(1)) ·γ γ(1)) = f(γ(f(γ(1)))) = f(γ(1)) = u,
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because γf = Id. We have established condition (4). To show that a module
satisfying condition (4), obviously cyclic, is projective, consider the diagram

Au
h //___

k !!B
BB

BB
BB

B
Q

g
����

R

and let q ∈ Q be such that g(q) = k(u). Then the it is straightforward
to show that the unique morphism determined by h(u) = q completes the
diagram. �

Example 5.8. Let A be the residuated lattice on the set A = {⊥, a, 1,⊤},
where ⊥ < a < 1 < ⊤, ⊥ is an absorbing element, 1 is the neutral element,
a2 = ⊥, a⊤ = ⊤a = a and ⊤2 = ⊤; A is denoted by T1 in [8]. Consider
the cyclic module P = A · a, where P = {⊥, a}, and note that a is the only
x ∈ A such that A ·x is isomorphic to P; indeed, A ·⊤ = {⊥, a,⊤}, A ·1 = A
and A · ⊥ = {⊥}. As a is not idempotent, P is a cyclic module that is not
projective, by Theorem 5.7. �

Corollary 5.9. P(FmL) and P(EqL) are projective cyclic P(ΣL)-modules.

Proof. We will make use of Theorem 5.7. In the case of the module P(FmL),
we let v = {x}, where x is a variable, and u = {κx}. Recall that κx is the
substitution that maps all variables to x. We have u⋆v = {κx(x)} = {x} = v.
Also, for a set a of substitutions, we have a ⋆ v = {σ(x) : σ ∈ a} and
τ ∈ (a ⋆ v)/⋆ v iff τ(x) = σ(x), for some σ ∈ a. For such τ and for every
variable z, we have τκx(z) = σ(x) = σκx(z), for some σ ∈ a, therefore
[(a ⋆ v)/⋆ v]u = au.

For the module P(EqL), we can take v = {x ≈ y} and u = {κx≈y}, where
x, y are distinct variables. Here we assume that we have partitioned the set
of all variables in two disjoint sets Vx, Vy with x ∈ Vx and y ∈ Vy, and that
κx≈y is the substitution that sends all of Vx to x and all of Vy to y. The
verification of property (1) of Theorem 5.7 is straightforward. �

5.3. Coproducts. The preceding results do not cover the case of the P(ΣL)-
module of sequents, as we show in the following proposition. Even though
this module is not cyclic, we prove that it is a coproduct of cyclic projective
modules, and hence it is projective.

Proposition 5.10. The P(ΣL)-module P(Seq) of sequents is not cyclic,
for every set of sequents with more than one type.

Proof. By way of contradiction assume that a set v of sequents is a generator
of P(Seq). As the application of a substitution to a sequent does not change
its type, it is easy to see that for every set a of substitutions, v contains a
sequent of a given type iff a ⋆ v contains a sequent of the same type. Now,
if v omits a given type, then a ⋆ v will omit the same type, for all a, a
contradiction as v was assumed to be a generator of P(Seq). Likewise,
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if v contains sequents from all types, then so does a ⋆ v, for all a, also
a contradiction since there are sets in P(Seq) that omit certain sequent
types. �

We start by defining coproducts in the category of A-modules. Let (Pi|i ∈
I) be a family of A-modules. The coproduct of this family is an A-module
P, denoted by

∐
i∈I Pi, together with a family of injective morphisms (σi :

Pi → P | i ∈ I) such that for every A-module Q and every family of
morphisms (τi : Pi → Q | i ∈ I), there exists a unique morphism τ : P → Q

such that τσi = τi.
We remark that if the coproduct of a family (Pi | i ∈ I) of A-modules ex-

ists, then the associated module morphisms σi are injective, and
⋃

i∈I σi(Pi)
generates P as an A-module.

It is clear that whenever the coproduct of a family of A-modules exists,
it is unique up to isomorphism. The next result guarantees that it always
exists.

Lemma 5.11. Let (Pi | i ∈ I) be a family of A-modules. The A-module∐
i∈I Pi in the definition of coproduct is the direct product

∏
i∈I Pi (with

scalar multiplication defined component-wise). The associated injective mod-
ule morphisms σi : Pi →

∏
i∈I Pi are defined, for each i ∈ I, by σi(p) =

(xj)j∈I , where xi = p and xj = ⊥, if j 6= i.

Proof. Note that the maps σi : Pi →
∏

i∈I Pi are module morphisms. If
τi : Pi → Q are module morphisms, then the map τ :

∏
i∈I Pi → Q,

defined by τ((xi)i∈I) =
∨
τi(xi), is residuated and its residual is τ∗(y) =

((τi)∗(y))i∈I . It also preserves scalar multiplication, and hence it is a module
morphism. �

The following standard categorical result shows why we are interested in
coproducts.

Lemma 5.12. The coproduct of a family of projective A-modules is a pro-
jective A-module.

Proof. Assume that (Pi | i ∈ I) is a family of projective A-modules, let
Q,R be A-modules, and let g : Q → R, k :

∐
i∈I Pi → R be module

morphisms such that g is onto. Let σi : Pi →
∐

i∈I Pi be the injective
module morphisms associated with the coproduct. Set ki = kσi. Since each
Pi is projective, there exists a module morphisms τi : Pi → Q such that
ki = gτi. It follows that there exists a module morphism τ :

∐
i∈I Pi → Q
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such that τi = τIi.
Q

g

����

∐
i∈I Pi

τ

66m
m

m
m

m
m

m
m

k
((RRRRRRRRRRRRRRR

Pi
oooo

τi

??�
�

�
�

ki

��@
@@

@@
@@

@

R

Consequently, kσi = ki = gτi = gτσi for all i ∈ I. Since for each i ∈ I both
of these morphisms are from Pi to R, by the definition of the coproduct,
there exists a unique morphism from

∐
i∈I Pi to R such that these mor-

phisms factor through Pi. Since both k and gτ serve this purpose, they are
equal. �

One can define different kinds of sequents. We saw single conclusion, as-
sociative commutative sequents in Example 2.6 and we discussed multiple
conclusion, associative sequents. For non-associative sequents see [11], hy-
persequents see [1], and multi-sequents see [7]. The powersets of all these
will be shown to be coproducts of cyclic projective modules.

Inspired by Pynko [13], given an algebraic language L and a set P of
predicate symbols, we consider atomic formulas in the language L ∪ P and
we call them LP-sequents. As an example, we mention that to represent
associative (multiple conclusion) sequents, for every pair (m,n) of not si-
multaneously zero natural numbers, we introduce a (m + n)-ary predicate
symbol P(m,n). Then, P(m,n)(α1, . . . , αm, β1, . . . , βn) is defined as the sequent
α1, . . . , αm ⇒ β1, . . . , βn, where α1, . . . , αm, β1, . . . , βn are L-terms.

For every predicate symbol P in P of arity n, and a substitution σ on the
terms algebra over L, we define σ(P (x1, . . . , xn)) = P (σ(x1), . . . , σ(xn)). If
SeqLP denotes the set of the above general sequents, then clearly, P(SeqLP )
is a P(ΣL)-module.

Theorem 5.13. The P(ΣL)-module P(SeqLP) is a coproduct of cyclic pro-
jective modules. Consequently it is projective.

Proof. As in the proof of Corollary 5.9, for every such atomic formula
P (x1, . . . , xn), we chose a partition Vx1

, . . . , Vxn of the set of variables, with
xi ∈ Vxi

, and let κ(x1,...,xn) be the substitution that sends all of Vxi
to xi,

for all i. The elements uP are the singletons containing the substitutions
κ(x1,...,xn).

It is easy to see that each vP generates a cyclic P(ΣL)-module P(PP )
that is also projective, by verifying property (1) of Theorem 5.7. Moreover,
the powerset of all the sequents P(SeqLP) becomes the coproduct of these
modules. This is simply because SeqLP =

⋃
P∈P PP , hence P(SeqLP) =

P(
⋃

P∈P PP ), which is isomorphic to
∏

P∈P P(PP ). In light of Lemma 5.11,
the latter – together with the associated injections – is the coproduct of the
family (P(PP ) : P ∈ P). �
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6. Finitary Translators

In the last section of the paper, we identify conditions under which an
equivalence of finitary consequence relations is induced by finitary transla-
tors. We start with the definitions of the pertinent notions.

Recall that, given a complete lattice P, a subset X of P is called (upward)
directed in P, if for all x, y ∈ X, there exists a z ∈ X such that x, y ≤ z.
An element x of a complete lattice P is called compact, if, for all directed
Y ⊆ P , x ≤

∨
Y implies x ≤ y, for some y ∈ Y . Equivalently, x is compact

if for all Z ⊆ P if x ≤
∨
Z, then there is a finite subset Z0 of Z such that

x ≤
∨
Z0. For every subset Q of P , we denote by KP(Q) the set of compact

elements of P that are contained in Q. We write KP for KP(P ). By a
finitary lattice we understand a complete lattice in which every element is
a join of compact elements; in particular, x =

∨
KP(↓ x), for all x ∈ P .

Note that KP and KP(↓ x) are directed sets, as the finite join of compact
elements is compact.

A consequence relation on a finitary lattice P is called finitary, if for all
x, y ∈ P , if x ⊢ y and y is compact, then there exists a compact element
x0 ∈ P such that x0 ≤ x and x0 ⊢ y. As the compact elements of the
powerset P(S) are exactly the finite subsets of S, the notion of a finitary
consequence relation generalizes the one defined for powersets. A closure
operator γ on a finitary lattice P is called finitary, if the corresponding
consequence relation ⊢γ , given in Lemma 3.5, is finitary. In other words, γ
is finitary if for all x, y ∈ P , whenever y ≤ γ(x) and y is compact, there
exists a compact element x0 ≤ x such that y ≤ γ(x0).

It should be noted that our choice of the terms “finitary closure operator”
and “finitary lattice” is dictated by other uses of “algebraic” in this area.
The most commonly used terms for these concepts in universal algebra are
algebraic closure operator and algebraic lattice, respectively.

Lemma 6.1. Let γ be a closure operator on a finitary lattice P. For every
compact element y of Pγ , there exists a compact element x of P such that
y = γ(x). Therefore, KPγ ⊆ γ[KP].

Proof. Let y be a compact element of Pγ . Then y = γ(z) for some z ∈ P

and γ(z) = γ(
∨PKP(↓ z)) =

∨Pγ γ[KP(↓ z)]. Since y is compact in Pγ

and y ≤
∨Pγ γ[KP(↓ z)], we have y ≤ γ(x), for some x ∈ KP(↓ z). Thus,

y ≤ γ(x) ≤
∨Pγ γ[KP(↓ z)] = y, and y = γ(x). �

Lemma 6.2. Let P be a finitary lattice and γ a closure operator on P. The
following statements are equivalent.

(1) γ is finitary.
(2) γ preserves directed joins. That is, for every directed X ⊆ P ,

γ(
∨PX) =

∨P γ[X].
(3) Arbitrary directed joins in Pγ coincide with the corresponding joins

in P. That is,
∨Pγ Y =

∨P Y , for every directed Y ⊆ Pγ .
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(4) γ(x) =
∨P γ[KP(↓ x)], for all x ∈ P .

(5) For every compact element x of P, γ(x) is compact in Pγ.
(6) KPγ = γ[KP].

If the above conditions hold, then Pγ is finitary.

Proof. To show that (1) ⇒ (2), let X be a directed subset of P . Since γ

is finitary, for every compact element y with y ≤ γ(
∨PX), there exists a

compact element x0 ≤
∨PX, such that y ≤ γ(x0). Since x0 ≤

∨PX, X
is directed and x0 is compact, there exists x ∈ X such that x0 ≤ x. So,

y ≤ γ(x0) ≤ γ(x) ≤
∨P γ[X]. Therefore, y ≤

∨P γ[X], for all compact

elements y ≤ γ(
∨PX). As P is finitary, we have γ(

∨PX) ≤
∨P γ[X].

(2) ⇒ (3) is obvious.

For (3) ⇒ (4), we have x =
∨PKP(↓ x), as P is finitary, so γ(x) =

γ(
∨PKP(↓ x)) =

∨Pγ γ[KP(↓ x))] =
∨P γ[KP(↓ x))], by the formula for

∨Pγ given in Lemma 3.3 and the assumption (3).
For (4) ⇒ (1), let y be compact with y ≤ γ(x), for some x ∈ P . Then,

y ≤
∨P γ[KP(↓ x)], so y ≤ γ(x0), for some x0 ∈ KP(↓ x), i.e., for some

compact x0 with x0 ≤ x.
For (3) ⇒ (5), assume that x is a compact element of P and let γ(x) ≤

∨Pγ Y , for some directed subset Y of Pγ . We have x ≤ γ(x) ≤
∨Pγ Y =

∨P Y , by (3). Since x is compact, there is a y ∈ Y , such that x ≤ γ(y);
hence, γ(x) ≤ γ(y). Consequently, γ(x) is compact in Pγ .

For (5) ⇒ (1), let y be a compact element of P and y ≤ γ(x) for some

x ∈ P . We have γ(y) ≤ γ(x) = γ(
∨PKP(↓ x)) =

∨Pγ γ[KP(↓ x)], by
the fact that γ : P → Pγ preserves joins. Since y is compact in P, γ(y) is
compact in KPγ , so y ≤ γ(y) ≤ γ(x0) for some x0 ∈ KP with x0 ≤ x.

The equivalence of (5) and (6) holds because of Lemma 6.1. �

We will make free use of the above equivalent statements for a given
closure operator, without explicit reference to the lemma.

It is easy to see that the condition that Pγ is finitary is not enough to
guarantee that γ is finitary. For example, let N∞ be the poset of natural
numbers, under the natural ordering, with an extra top element ∞. Then
the closure operator γ on P(N∞) that sends a set X to the downset ↓ (

∨
X)

has image P(N∞)γ , consisting exactly of the empty set and the principal
downsets of N∞, which is a finitary lattice. However, γ is not finitary as it
sends the compact element {∞} to the non-compact element ↓∞.

Let P and Q be finitary lattices. A residuated map τ : P → Q is called
finitary, if the image of every compact element is compact. The following
corollary, which restates the equivalence of (1) and (5) of the preceding
lemma, shows that the two definitions of finitarity coincide for a map viewed
as a closure operator or as a residuated map.
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Corollary 6.3. Let γ be a closure operator on a finitary lattice P. Then
γ : P → P is finitary as a closure operator iff γ : P → Pγ is finitary as a
residuated map.

Lemma 6.4. If k : P → Q is a finitary residuated map between finitary
lattices, then k∗k is a finitary closure operator on P.

Proof. Given a directed subset Y of Pk∗k, we will show that
∨Pk∗k Y ≤

∨P Y . As P is finitary, it is enough to show that every compact element

of P less or equal to
∨Pk∗k Y is also less or equal to

∨P Y . Let x ∈ KP

with x ≤
∨Pk∗k Y . Then k(x) ≤ k(

∨Pk∗k Y ) = k(k∗k(
∨P Y )) = k(

∨P Y ) =
∨Q k[Y ]. As k is finitary and x is compact in P, k(x) is compact in Q.
Hence, since k[Y ] is directed, k(x) ≤ k(y), for some y ∈ Y . Consequently,

x ≤ k∗k(x) ≤ k∗k(y) = y ≤
∨Pk∗k Y . �

Lemma 6.5. Let P and Q be finitary lattices, τ : P → Q a finitary resid-
uated map, and δ a finitary closure operator on Q.

(1) The closure operator δτ = τ∗δτ : P → P is finitary.
(2) The map f = δτ|Pδτ

: Pδτ → Qδ is finitary.

Proof. (1) If y ≤ δτ (x), for some compact element y, then y ≤ τ∗δτ(x),
so τ(y) ≤ δτ(x). Since τ is finitary and y is compact, τ(y) is compact.
Furthermore, since δ is finitary, there is a compact element x′ ≤ τ(x) such
that τ(y) ≤ δ(x′). Since P is finitary, x =

∨
KP(↓ x), so τ(x) =

∨
τ [KP(↓

x)], by Lemma 3.1(1). Since x′ ≤ τ(x), there exists a compact element
x0 ≤ x such that x′ ≤ τ(x0). Consequently, τ(y) ≤ δτ(x0), hence y ≤
τ∗δτ(x0) = δτ (x0), for some compact element x0 ≤ x. Thus, δτ is finitary.

(2) Let x be a compact element of Pδτ ; we will show that f(x) is compact
in Qδ. By Lemma 6.1, there exists a compact element y of P such that x =
δτ (y). By the finitarity of τ and δ, we have that f(x) = f(δτ (y)) = δ(τ(y)
is compact, in view of Lemma 6.2. �

A finitary residuated lattice is a finitary lattice in which the identity is a
compact element, and the product of any two compact elements is compact.

A finitary module is an A-module P such that (i) A is a finitary residuated
lattice; (ii) P is a finitary lattice; and (iii) if a, v are compact elements of A

and P, respectively, then a ⋆ v is a compact element of P.
For a fixed finitary residuated lattice A, we will denote by AFM the cat-

egory of finitary A-modules and finitary module morphisms (finitary trans-
lators). Recall that such a morphism maps compact elements to compact
elements.

Note that the notion of projectivity depends on the category AM or

AFM. Recall the definitions of the triangle (S) and the square (T) preceding
Theorem 5.1. In view Corollary 6.3 finitary structural closure operators on
finitary modules can be identified with morphisms in the category AFM,
so the square (T) makes sense. We verify the analogue of the Theorem 5.1
where (S) and (T) (projectivity) are considered in AFM.
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Theorem 6.6. The objects P of the category AFM for which all squares
of type (S) can be completed are exactly the projective objects of AFM.

Proof. We will show that the proof of Theorem 5.1 extends to the current
setting. In particular, we assume that all objects and morphisms are fini-
tary and show that the derived objects and morphisms are also finitary.
In particular, k∗k is finitary, as a closure operator on P, by Lemma 6.4,
and as a module morphism k∗k : P → Pk∗k by Lemma 6.2. Pk∗k is fini-
tary by Lemma 6.3. To see that k′ is finitary, note that for x ∈ KPk∗k

,
k′(x) = k′(k∗k(x)) = k(k∗k(x)) = k(x), which is compact in R. Likewise,
we show that g∗g, g

′ and Qg∗g are finitary. Finally, f is finitary, being the
composition of two finitary maps. �

Corollary 6.7. Suppose P is an object in AFM, and γ a finitary structural
operator on P. Then Pγ is finitary as an A-module.

Proof. By Lemma 6.2, Pγ is finitary as a lattice. To show that it is a finitary
module, we need to verify that scalar multiplication preserves compactness.
Let a ∈ KA and γ(x) ∈ Pγ . By Lemma 6.1, x ∈ P can be taken to be
compact. As P is finitary a ⋆ x is compact in P. Also, since γ is finitary,
γ(a ⋆ x) = a ⋆γ γ(x) is compact in Pγ . �

Recall that by Theorem 5.7 the cyclic projective in AM modules are up
to isomorphism exactly the ones of the form Au, where u is idempotent. If
further u is compact in A, we will refer to such a module as regular. Note
that since the joins in Au coincide with the joins in A by Lemma 5.4, if u
is compact in A, then it is compact in Au.

Lemma 6.8. The P(ΣL)-modules P(FmL) and P(EqL) are regular.

Proof. It was noted in the proof of Corollary 5.9 that u = {κx} for P(FmL)
and u = {κx≈y} for P(EqL), both of which are finite, hence compact. �

Lemma 6.9. If u is compact in A, then the compact elements of Au are
exactly of the form au, where a is compact in A; in symbols KAu = KAu.

Proof. Clearly, if a is compact in A, then au is also compact in A, and
hence also compact in Au. Conversely, let au be compact in Au. Since A

is finitary, a =
∨AC, where C is the set of compact elements of A below a.

Thus, au =
∨A{cu : c ∈ C} =

∨Au{cu : c ∈ C}. Note that {cu : c ∈ C} is
a directed set of compact elements of Au, as u is compact in Au. Since au
is compact in Au, there exists c ∈ C such that au = cu. �

Note that for the inclusion KAu ⊆ KAu it suffices to assume that u is
compact in Au.

Corollary 6.10. Every regular module is finitary.

Proof. Every regular module is isomorphic to Au, for u idempotent and
compact in A. An arbitrary element of Au is of the form au, where a ∈ A.
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So, au = (
∨
KA(↓ a))u = (

∨
KA(↓ a)u). Since KA(↓ a) = KA∩ ↓ a, by

Lemma 6.9 KA(↓ a)u are compact elements in Au. So every element of Au
is a join of compact elements of Au. �

The following lemma shows that for cyclic objects Au in AM such that
u is compact in A, projectivity in AM implies projectivity in AFM.

Lemma 6.11. Regular A-modules are projective in the category AFM.

Proof. We will show that if the A-modules P,Q,R, the module morphism
k : P → R, and the surjective module morphism g : Q → R are all finitary
and if, further, P is regular, then there exists a finitary module morphism
h : P → Q such that gh = k.

P
h //___

k ��?
??

??
??

?
Q

g
����

R

In view of Theorem 5.7 and the definition of a regular module, we may
assume that P = Au, where u is an idempotent element of A that is compact
in A, and hence in Au. Consider the element y = k(u) of R. It is clear that
y is a compact element of R. We claim that there exists compact w in Q

such that y = g(w). Indeed there exists x in Q such that y = g(x). Now,

x =
∨QX, for some setX of compact elements of Q, and so g(x) =

∨R g[X].
By the compactness of y in R, there exists a finite subset Y of X such that
δ(x) =

∨R g[Y ]. But then, if w denotes the compact element
∨Q Y in Q,

we get y = g(w), as was to be shown. Let z = u ⋆Q w. Then z is a compact
element of Q. We claim that the map τz : P → Q, defined by au 7→ a ⋆Q z,
is a finitary module morphism from P to Q such that gτz = k.

We first note that τz is a well-defined map. Indeed, suppose that au = bu,
for a, b ∈ A. Then a ⋆Q z = a ⋆Q (u ⋆Q w) = (au ⋆Q w) = (bu ⋆Q w) = . . . =
b⋆Q z. We next show that τz is residuated. We have for all a ∈ A and q ∈ Q,
τz(au) ≤ q ⇒ a ⋆Q z ≤ q ⇒ a ≤ q/

Q
z ⇒ au ≤ (q/

Q
z)u ⇒ (au) ⋆Q z ≤

((q/
Q
z)u) ⋆Q z ⇒ a ⋆Q z ≤ (q/

Q
z) ⋆Q z ⇒ a ⋆Q z ≤ q. We have shown that

τz(au) ≤ q iff au ≤ (q/
Q
z)u. Thus, τz is residuated and its residual is the

map (τz)∗ : Q → P, defined by (τz)∗(q) = (q/
Q
z)u. To prove that τz is a

module morphism, consider a, b ∈ A. We have, aτz(bu) = a ⋆Q (b ⋆Q z) =
(ab) ⋆Q z = τz(a(bu)).

It remains to verify that τz is finitary. In view of Lemma 6.9, for every
compact element cu of Au we can take c to be compact in A. Then τz(cu) =
c ⋆Q z, which is a compact element of Q, since Q is finitary, c is a compact
element of A and z is a compact element of Q. �

In view of Remark 3.10, the following corollary implies Theorem 2.4.
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Corollary 6.12. Every finitary representation (hence also every isomor-
phism) between finitary consequence relations on the sets P(FmL) and P(EqL)
is induced by a finitary translator.

We will not need the following result, but we state it since it is interesting
and relevant to our discussion, as it provides an insight to the nature of
module morphisms. Moreover, it builds on notions developed in [3]. Its
proof follows ideas similar to the ones in the proof of the Lemma 6.11. Let
Q be an A-module and a ∈ A. An element y of Q is called a-invariant, if
a ⋆ y = y.

Theorem 6.13. Assume that the A-module P is cyclic projective with re-
spect to the elements v and u, and that Q is also an A-module. Then, there
is a bijection between module morphisms τ from P to Q and u-invariant
elements y of Q, given by τ 7→ τ(v) and y 7→ τy, where τy(x) = (x/⋆ v) ⋆ y.

Lemma 6.14. Let Pi be finitary lattices, for all i ∈ I. An element of∏
i∈I Pi is compact iff it has finitely many non-zero coordinates and those

are occupied by compact elements of the corresponding factors.

Proof. Let xi be a compact element of Pi, for some i ∈ I, and let x̄i be
the element of P with i-th coordinate equal to xi and all other coordinates
equal to ⊥. Clearly, x̄i is compact in P, as any directed join exceeding it
contains elements with all but the i-th coordinate equal to ⊥. The directed
join in Pi of the elements in the i-th coordinate exceed xi, so one of them
exceeds xi. The corresponding element of P exceeds x̄i. Since the finite join
of compact elements is also compact, we have one direction of the lemma.

Conversely, assume that x = (xi)i∈I is a compact element of P. Clearly,
x =

∨
i∈I x̄i, so there is a finite subset I0 of I such that x =

∨
i∈I0

x̄i. �

We are now ready to prove the main result of this section.

Theorem 6.15. The coproduct in AM of a family of regular A-modules is
projective in AFM.

Proof. We will show that if P is the coproduct of a family of regular A-
modules, Q an A-module, γ a structural closure operator on P, δ a finitary
structural closure operator on Q and f a finitary representation of γ in δ,
then f is induced by a finitary module morphism τ : P → Q.

For each i ∈ I, let σi : Pi → P be the injective module morphism
associated with the coproduct.

Pi��

σi

��

τi

!!C
C

C
C

P
τ //___

γ
����

Q

δ
����

Pγ
// f // Qδ
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Note that the map fγσi is a finitary module morphism, and hence Lemma 6.11
implies that there exists a finitary module morphism τi : Pi → Q such that
fγσi = δτi. Now by the universal property of the coproduct, there exists
τ : P → Q such that τσi = τi, for all i ∈ I.

To show that τ is finitary, let x = (xi)i∈I be a compact element of P.
By Lemma 6.14, there is a finite subset I0 of I such that xj = ⊥ for all
j 6∈ I0, and xi is compact in Pi, for all i ∈ I0. Since τi is finitary, τi(xi) is
compact in Q, for i ∈ I0. Also, τj(xj) = τj(⊥) = ⊥, for j 6∈ I0. Therefore,
by Lemma 5.11 we have, τ((xi)i∈I) =

∨
i∈I τi(xi) =

∨
i∈I0

τi(xi), which is
compact, being a finite join of compact elements. �

Corollary 6.16. Let P, Q be each a coproduct in AM of regular A-modules,
and let γ, δ be finitary structural closure operators on P and Q, respectively.
Then every equivalence between γ and δ is induced by finitary module mor-
phism.

In view of Theorem 5.13, Corollary 6.8 and Corollary 6.16, we have the
following result.

Corollary 6.17. Every finitary representation (hence also every isomor-
phism) between consequence relations on the P(ΣL)-modules P(SeqLP1

) and
P(SeqLP2

) is induced by a finitary translator, where L is any algebraic lan-
guage and P1 and P2 are any predicate-only languages.
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