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Abstract.  In his milestone textbook Lattice Theory, Garrett Birkhoff challenged his
readers to develop a “common abstraction” that includes Boolean algebras and lattice-
ordered groups as special cases. In this paper, after reviewing the past attempts to solve the
problem, we provide our own answer by selecting as common generalization of B.A and LG
their join BAV LG in the lattice of subvarieties of F L (the variety of FL-algebras); we argue
that such a solution is optimal under several respects and we give an explicit equational
basis for BAV LG relative to FL. Finally, we prove a Holland-type representation theorem
for a variety of FL-algebras containing BAV LG.
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1. Introduction

In his milestone textbook Lattice Theory [2, Problem 108], Garrett Birkhoff
challenged his readers by suggesting the following project:

Develop a common abstraction that includes Boolean algebras
(rings) and lattice ordered groups as special cases.

Over the subsequent decades, several mathematicians tried their hands at
Birkhoff’s intriguing problem. Its very formulation, in fact, intrinsically
seems to call for reiterated attempts: unlike most problems contained in the
book, for which it is manifest what would count as a correct solution, this
one is stated in sufficiently vague terms as to leave it open to debate whether
any proposed answer is really adequate. It appears to us that Rama Rao
puts things right when he remarks [28, p. 411]:

A Boolean ring or an ¢-group may be regarded as an algebra
A = (A;N,V,+,—) of species (2,2,2,—1) and each of them
is equationally definable; consequently any algebra of species
(2,2,2,—1) satisfying the identities common to Boolean rings
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and /-groups can be taken as a solution to Birkhoff’s problem.
However, such a common abstraction will be uninteresting unless
it possesses as much as possible of the richness of the structures
common to both f-groups and Boolean rings.

In other words: although any class of structures that includes both Boolean
algebras (or Boolean rings) and ¢-groups could be considered as an answer
to Birkhoff’s problem, not all such generalizations stand on an equal footing.
Some common abstractions are better than others in that they preserve a
greater share of the properties enjoyed by both classes. The more common
properties survive in the abstraction, the more acceptable it will be as a
realization of Birkhoff’s project.

A question, now, arises in a natural way: is there any possible solution we
could count as optimal? To answer this question, we need to be somewhat
more specific than Birkhoff or Rama Rao as to what we mean by “common
property.” Hereafter we summarize our — necessarily biased — viewpoint
on the issue by listing a few desiderata.

D1 As regards the general properties, the common abstraction should
at the very least have the same class type as Boolean algebras and
f-groups: since both classes are varieties of total algebras, the gener-
alization should also be such.

D2 As regards the theoretical properties, an indispensable requirement is
that the equational theory of the common abstraction be as large as
it can: namely, one should formulate the common abstraction V in a
given signature v such that term equivalent versions of B.A (the variety
of Boolean algebras) and £G (the variety of /-groups) are varieties of
signature v, and the equational theory of V is the intersection of the
equational theories of BA and LG.

D3 As regards the metatheoretical properties, it would be desirable that
Y share with BA and £G as many as possible of the nice universal
algebraic properties characterizing them: to name just a few, signifi-
cant properties of congruence lattices (like congruence distributivity,
congruence permutability, or congruence regularity) or the availability
of a satisfactory representation.

D4 Finally, it would be definitely preferable if the proposed solution were
not ad hoc — meaning that it would serve other purposes than the
present one or, at least, it would be a subvariety of some well-known,
significant and independently motivated variety.
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The remainder of the paper is divided as follows. In Section 2 we review
the past attempts to solve the problem, showing that all of them — at least
all the ones with which we are familiar — fail one or another of D1-D4. In
Section 3, we recall some basic notions about residuated lattices and FL-
algebras. In Sections 4 and 5, we provide our own answer to the problem
by selecting as common generalization of BA and LG their join BAV LG in
the lattice of subvarieties of FL (the variety of FL-algebras); we also give an
explicit equational basis for BA V LG relative to FL£. Our solution, which
is based on some results in [19] and [11], automatically satisfies desiderata
D1, D2, and D4. Results bearing on the issue of D3, such as a Holland-type
representation theorem for a variety of FL-algebras containing BAV LG, are
reserved for the final section.

2. A survey of previous attempts

2.1. D. Ellis (1953)

Historically, D. Ellis [9] made the first attempt to solve Birkhoff’s problem
in the second of his “Notes on the foundation of lattice theory”. He was
interested in characterizing such properties of lattices as distributivity or
modularity in terms of the existence of special binary operations named
c-functions:

DEFINITION 1. Let L be a lattice. A binary operation * on L is a c-function
on L provided for all a,b € L:

axb=(aAb)x(aVDb).

Ellis shows, for example, that a lattice is distributive if and only if it
admits a c-function enjoying some kind of cancellation property. Since both
Boolean algebras and Abelian (-groups can be viewed as lattices with c-
functions (in the former case a * b is the symmetric difference (a A —b) V
(b A —a), while in the latter the role of a c-function is played by group multi-
plication), Ellis observes, these examples “suggest [lattices with c-functions]
as a possible partial answer to Birkhoff’s problem” [9, p. 257]. The author’s
cautious statement exposes his awareness that the failure to encompass all
{-groups as instances of lattices with ¢ -functions makes his suggestion ques-
tionable.
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2.2. K. L. N. Swamy (1965-1966)

K. L. N. Swamy seems to be the first author who gets reasonably close to the
heart of the matter by observing that both Boolean algebras and ¢-groups are
(dually) residuated structures. Actually, the problem Swamy wants to tackle
in a series of papers in Mathematische Annalen in the mid-sixties [32, 33, 34]
is at the same time more general and more specific than Birkhoff’s one: he
aims at developing a common generalization of Brouwerian (dual Heyting)
algebras and Abelian ¢-groups. The notion Swamy deems appropriate for
this purpose is defined below.

DEFINITION 2. A dually residuated lattice-ordered semigroup, for short DRL-
semigroup, is an algebra A = (A, 4+, —, A, V, 0) of type (2,2, 2,2, 0) such that:
(1) the reduct (A, +, A, V,0) is an Abelian /-monoid,;
(2) for all a,b € A, a —b = min{zr € A:a<b+z}: in other words,
subtraction is the coresidual of addition; and

(3) forall a,b e A, (a—b)V0)+b<aVband0<a—a.

Swamy points out that Abelian ¢-groups are DRL semigroups under the
obvious matching of fundamental operations, while Boolean algebras are
DRL semigroups by taking lattice join as addition and difference (a A —b) as
subtraction; he also shows that DRL semigroups form a variety, and provides
equational bases for the subvarieties of Boolean algebras and Abelian /¢-
groups. Finally, he specifies necessary and sufficient conditions for a DRL
semigroup to be decomposed as a direct product of a Boolean algebra and
an Abelian /-group.

It is only in the third paper of the series that Swamy introduces a non-
commutative generalization of DRIL-semigroups, which is evidently far more
interesting from the viewpoint of the present paper — and also in itself: if
right coresiduals are added, the resulting variety is term equivalent to the
variety of GBL algebras, introduced in [18] and deeply investigated by au-
thors working on residuated lattices. Unfortunately, no results are proved on
that score: rather, the reader is referred to the author’s PhD thesis which
— as far as we could ascertain — never appeared in print. Swamy’s ne-
glected work has been taken up again only in relatively recent times (see
e.g. [20, 22]), where DRL semigroups in their noncommutative incarnation
are studied and renamed, more appropriately, DRL monoids. However, the
language of residuated lattices has gained favor among algebraic logicians,
and the transition from dually residuated structures to residuated struc-
tures, and vice versa, is obvious — one simply has to reverse the underlying
partial order.



On Birkhoff’s Common Abstraction Problem 1083

2.3. O. Wyler (1966)

The main motivational spur for a number of authors who have worked on
Birkhoff’s problem is given by their desire to find a general unified frame-
work for the theories of measure and integration. Putting off a less cursory
discussion on this subject until we survey the work by K. D. Schmidt [29, 30],
we observe that O. Wyler [35] falls within this category. Recall that a clan
of functions is a sublattice of the vector lattice of all real-valued functions
on some space X that: a) contains g — f whenever it contains f, g and f < g;
and b) contains h — f whenever it contains f, g, h,g — f, and h — g. Trying
to achieve an abstract counterpart of this concept, Wyler introduces a class
of partial algebras called abstract clans:

DEFINITION 3. An abstract clan is a lattice L with a partial binary opera-
tion — (called subtraction), defined on ¥ C L?, that satisfies the following
conditions for all a,b,c € L:

(1) If a < b, then (a,b) € %;

(2) Ifavb<c thena<biff c—b<c—a;

(3) If (b,a),(c,a) e Xand b<c¢,thenb—a <c—aand (c—a)—(b—a) =
c—b;

(4) If b < ¢ and a < ¢ — b, then there is d € L such that (¢,d) € ¥ and
c—d=(c—b)—a.

Condition (4) in Definition 3 can be interpreted as postulating the exis-
tence of a partial addition on the clan. A clan is commutative if so is such
an addition, and total if ¥ = L?. Lattice-ordered groups are total clans
under both division operations: a — b can be defined either as ab~! or as
b~'a. Boolean algebras, on the other hand, are commutative clans under
Y={(a,b) e L?:b<a} and a—b=aA-b.

2.4. T. Nakano (1967)

T. Nakano [26, p. 355] is intrigued by the “various parallelisms between
the theory of rings and that of partly ordered systems,” quoting as an ex-
ample the similarities in the proofs of mutually independent theorems like
Lorenzen’s characterization of representable /-groups and the representation
of integral domains as intersections of quasilocal integral domains. Nakano
surmises that “there should be an underlying theorem generalizing both.”
This leads him towards a ring-like generalization of ¢-groups that also in-
cludes Boolean rings.
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Whereas Wyler’s addition was partial, Nakano’s one is everywhere de-
fined, but multivalued. We give a simple example. Let A = (A,+,—,0) be
an Abelian group, and let Ma = {{a,—a} : a € A}. We refer to each class
{a, —a} in this subsection by the symbol @. We can now define a multivalued
operation B : (Ma)? — g (M) in such a way that, for any @,b € Ma,

EEEE:{CL—}-b,a—b}.

Abstracting away from this particular example, Nakano introduces mul-
timodules and multirings as follows:

DEFINITION 4. A multimodule is a set M together with an operation H :
M — (M) such that, if we define AB B = |J{aBb:a € A,bec B}, the
following conditions are satisfied for any a,b,c € M:

(1) aB(bHc) = (aBb)He
(2) aBb=bHa
(3) c€caBbimpliesacbBec

A multiring is a multimodule together with a second operation [ : M —
M such that, if we define AL B = {aldb:a € A,be B}, the following
conditions are satisfied for any a,b,c € M:

(4) a2 (bHe)=(aBb)Hc
(5) a2 (bHc)=(aEDb) B (aHc)
(6) (bBc)Ha=(bEa)B(cHa)

It is easily seen that Boolean algebras are multirings under a[1b = a V b
and a b= {c:aANb=bAc=cAa}, while {-groups are multirings under
aldb = ab and the same addition operation as Boolean algebras. A significant
common generalization of theorems about commutative rings and ¢-groups
is not really attained in this paper, but some partial results in this direction
are presented.

2.5. V. V. Rama Rao (1969)

Rama Rao was an “academic brother” of Swamy, for both were students of
Subrahmanyam at Andhra University in Waltair, India. His approach to the
problem in [28] is, indeed, not too dissimilar from Swamy’s: he considers the
variety of all algebras of type (2,2,2,2,0) and seeks necessary and sufficient
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conditions for an algebra of that type to be representable as a direct product
of a Boolean ring and of an /-group. His main theorem in the paper is a
characterization of the class of algebras having this property by means of
a list of axioms which, unfortunately, is not wholly equational. Although
the fact that the class is a variety can be recovered from general results in
universal algebra (see Section 4 below), the paper falls short of providing an
equational basis for that variety.

2.6. K. D. Schmidt (1985-1988)

Let R be a ring of subsets over some nonempty set X, and let V be a
vector space. Recall that a (V-valued) vector measure on R is a map ¢ :
R — V such that ¢ (A4 B) = ¢ (A) + ¢ (B) holds for disjoint A, B € R.
Recall, moreover, that the span of the characteristic functions of sets in R
(taken in the space of all real-valued functions over X) is the universe of a
vector lattice D (R) under pointwise defined operations, and that there is a
bijective correspondence between V-valued vector measures on R and linear
transformations from D (R) to V. Schmidt [31, p. 138] observes:

This one-one correspondence can be used to obtain results on
vector measures from corresponding ones on linear operators —
provided that suitable results on linear operators are known.
Instead of reducing problems on vector measures to those on
linear operators, one can try to develop a common approach to
vector measures on an algebra of sets and linear operators on a
vector lattice.

This common approach is first attempted by simultaneously generalizing
Boolean rings and Abelian f-groups. In [29], Schmidt introduces lattice
ordered partial semigroups as follows:

DEFINITION 5. A lattice ordered partial semigroup is a lattice (L, A, V) with
a partial operation +, defined on ¥ C L?, which is associative, commuta-
tive, compatible with lattice order (provided the relevant sums are defined)
and has an identity element 0. A lattice ordered partial semigroup has the
cancellation property if it is cancellative as a partial semigroup, while it has
the difference property if for any a,b € L there exists a ¢ € L such that
(a,¢),(aNbyc)eX,a+c=aVband (a \Nb)+c=h.

It can be checked that any Boolean algebra (or ring) B can be turned into
a lattice ordered partial semigroup by taking the set {(a, byeB2:anb= 0}
as X and lattice join as addition. Likewise, any Abelian ¢-group G can
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be viewed as a lattice ordered partial semigroup if we take ¥ = G? and
group multiplication as addition. In the same paper, necessary and sufficient
conditions are given for a lattice ordered partial semigroup to be a Boolean
algebra or an Abelian ¢-group.

In a subsequent paper [30], lattice ordered partial semigroups with the
cancellation property and the difference property are generalised to the non-
commutative case under the name of minimal clans. Schmidt observes that
his minimal clans are equivalent to a proper subclass of Wyler’s abstract
clans while still including Boolean algebras and ¢-groups as examples, whence
his generalization is more effective. It is interesting to remark that minimal
clans are referred to by some authors (see e.g., [6, 8, 15]) as Vitali spaces.

2.7. E. Casari (1989)

While the motivational stimuli for the classes of structures we reviewed so far
arise from different areas of mathematics, Casari [4] was driven to Birkhoff’s
problem by linguistical and philosophical considerations. He was interested
in giving an account of such natural language comparative sentences as “c
is at most as P as d is (),” where ¢,d are names and P, () are predicates.
If we accept that sentences may admit of different “degrees of truth” (a
widely shared concept in the area of many-valued logics), the aforementioned
sentence can be considered true when “cis P” is at most as true as “d is Q).”
To formalize his idea, Casari needed an implication connective which comes
out true exactly when its antecedent is at most as true as its consequent.
Although fuzzy logics share the same basic assumptions, for a number of
reasons' Casari was dissatisfied with such an approach.

Along these lines, Casari came to build up a logical system for compara-
tive logic whose algebraic models are called Abelian £-pregroups. The variety
of Abelian ¢-pregroups is term equivalent to the commutative subvariety of
InFL (see Section 3 below) satisfying the equations

Pl z—-a=~1
P2 0—-1~1
Abelian ¢-groups are exactly the Abelian /-pregroups satisfying the equa-

tion 0 =~ 1, while Boolean algebras are the Abelian ¢-pregroups satisfying
Ty =T AY.

1For example, the use of bounded algebras as systems of truth degrees in mainstream
fuzzy logics prevents a proper treatment of comparative sentences of the form “c is less P
than d” when both ¢ and d are clear-cut instances of P, yet it makes sense to say that d
is more P than c is.
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The theory of Abelian ¢-pregroups was investigated in subsequent years
in ways that are relevant for Birkhoff’s problem. Minari (circa 1992) gen-
eralized the theory of Abelian /-pregroups to the noncommutative case, but
unfortunately his notes never made their way to the publisher. One of the
present authors [27], on the other hand, stayed commutative and proved that
the join of the varieties of Abelian ¢-groups and of Boolean algebras in the
subvariety lattice of the variety of Abelian ¢-pregroups is term equivalent to
the variety whose equational basis relative to the commutative subvariety of
InFL is given by P1, P2 and the following equations:

P3 z((z—yAl)=zxzAy
P4 z(ynz)=zyAzz
P5 z—(y—=0)—y)=@—-y 0y

2.8. N. Galatos and C. Tsinakis (2005)

So far, the most successful common generalization of Boolean algebras and
(-groups is undoubtedly represented by residuated lattices (see below, and
also [10]). In [11], Galatos and one of the present authors consider a variety
of residuated lattices that simultaneously generalizes Chang’s M V-algebras
(one of the most important class of structures in many-valued logic: see
e.g. [5]) to the non-commutative, unbounded and non-integral case. These
algebras are called generalized MV-algebras, or GMV-algebras. The class
GMYV of all GMV algebras is broad enough to include all ¢-groups and all
Boolean algebras (which are nothing but idempotent MV algebras). One of
the main results in this paper is a representation of any GMV-algebra as a
direct product of an /-group and a nucleus retraction of the negative cone
of an f-group. More details about GMYV will be given in the remainder of
the present paper.

3. Basic facts about residuated lattices

We refer the reader to [3, 18, 25] or [10] for basic results in the theory of
residuated lattices. Here, we only review background material needed in the
remainder of the paper.

A binary operation - on a partially ordered set (A, <) is said to be resid-
uated provided there exist binary operations \ and / on A such that for all
a,b,ce A,

(Res) a-b<c iff a<e/b iff b<a\c
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We refer to the operations \ and / as the left residual and right residual
of -, respectively. As usual, we write zy for z -y, 2 for zz and adopt the
convention that, in the absence of parentheses, - is performed first, followed
by \ and /, and finally by V and A.

The residuals may be viewed as generalized division operations, with
x/y being read as “z over y” and y\z as “y under x”. In either case, z
is considered the numerator and y is the denominator. They can also be
viewed as generalized implication operators, with z/y being read as “z if y”
and y\z as “if y then 2”. In either case, = is considered the consequent and
y is the antecedent. We tend to favor \ in calculations, but any statement
about residuated structures has a “mirror image” obtained by reading terms
backwards (i.e., replacing = - y by vy -  and interchanging z/y with y\z).

We are primarily interested in the situation where - is a monoid operation
with unit element 1 and the partial order < is a lattice order. In this case,
we add the monoid unit and the lattice operations to the similarity type and
refer to the resulting structure A = (A, V, A, -, \,/,1) as a residuated lattice.
An FL-algebra is an algebra A = (A,V,A,-,\,/,1,0) such that the reduct
(A,V, A, \,/,1) is a residuated lattice; in other words, we do not assume
anything about the additional constant 0. Throughout this paper, the class
of residuated lattices will be denoted by RL and that of FL-algebras by
FL. We adopt the convention that when a class is denoted by a string of
calligraphic letters, then the members of that class will be referred to by the
corresponding string of Roman letters. Thus an RL is a residuated lattice,
and an FL is an FL-algebra.

The existence of residuals has the following basic consequences, which
will be used in the remainder of the paper without explicit reference.

PROPOSITION 6. Let A be an RL.

(1) The multiplication preserves all existing joins in each argument; i.e.,
if VX and 'Y exist for X, Y C A, then \/ ,cx ey (Ty) exists and

(VA(V)- Ve

(2) The residuals preserve all existing meets in the numerator, and convert
existing joins to meets in the denominator, i.e. if \| X and \Y exist
for XY C A, then for any z € A, N\,cx(z\2) and N\ ey (2\y) ewist

and
(\/X)\z:xg(x\z) and z\(/\Y) = /\(z\y)

yey
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(3) The following identities and quasi-identities (and their mirror images)

hold in A.

(a) (z\y)z < x\yz

(b) Nz ~x

(c) z\y < zz\2y

(d) r<y=y\z<\z
(e) (@\y)(y\2) < x\z
(f) zy\z =~ y\(z\z)
(g) z(z\1)\1~1
(h) z\(y/z) = (z\y)/=

ProproOSITION 7. RL and FL are finitely based varieties in their respec-
tive signatures, for the residuation conditions (Res) can be replaced by the
following equations (and their mirror images):

(i) y <z\(zy v 2)
(ii) z (yVz) = zy Vaz

(iii) y(y\z) <=

Given an RL A = (A,V,A,+,\,/,1) or an FL. A = (A, V,A,-,\,/,1,0),
an element a € A is said to be integral if 1/a = 1 = a\1, and A itself is
said to be integral if every member of A is integral. We denote by ZRL
the variety of all integral RLs, and by F£; (following [10]) the variety of all
integral FLs. FLy will denote the variety of FLs whose equational basis
relative to FL; is given by

El O\z~1

Boolean algebras are term equivalent to the subvariety of FLy whose
equational basis relative to FL,, is given by the equations

E2 zxzy=xAy
E3 z/(y\z)=aVy=~(z/y)\z

(cf. [18] or [10]), which we denote by B.A. Its members will be referred to
as Boolean algebras.

An element a € A is said to be invertible if (1/a)a = 1 = a(a\1). This
is of course true if and only if a has a (two-sided) inverse a~!, in which
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case 1/a = a=! = a\1l. The RLs and the FLs in which every element is
invertible are therefore precisely the ¢-groups. Perhaps a word of caution
is appropriate here. An £-group is usually defined in the literature as an
algebra G = (G, A, V,-, ~1,e) such that (G, A, V) is a lattice, (G,-, ~1,e)isa
group, and multiplication is order preserving (or, equivalently, it distributes
over the lattice operations). The variety of ¢-groups is term equivalent to
the subvariety of RL defined by the equations (1/x)z = 1 = z(x\1); the
term equivalence is given by 27! = 1/r and z/y = zy ', 2\y = 271y, It
is also term equivalent to the subvariety of FL defined by the equations
(1/z)x = 1= z(x\1) and 0 ~ 1. With a slight abuse, we identify with each
other the aforementioned subvarieties, which we denote by £G. Its members
will be referred to as ¢-groups.

We already mentioned GMV algebras as simultaneous generalizations
of MV algebras to the noncommutative, unbounded and nonintegral case.
GMYV algebras are RLs; more precisely, the variety GMYV of GMV algebras
is axiomatized relative to RL by the equations

E4 o/ ((@Vy)\o)~aVy~ (o/ (V).

The same equations also axiomatize the linguistic expansion of GMYV by
the constant 0 — which we also call GMYV, with a slight terminological abuse —
relative to FL. The variety ZGMYV of integral GMV-algebras is axiomatized
relative to ZRL (or FL;, with the same proviso about the similarity type)
by the equations E3 displayed above. In particular, when 0 is included in
the similarity type:

e The already mentioned variety of M V-algebras is term equivalent to the
subvariety MV of ZGMYV whose equational basis relative to ZG MYV
is given by the equations E1 and

E5 zy=~yz.

e The variety of pseudo-MV-algebras, a noncommutative generalization
of MV algebras [12], is therefore term equivalent to the subvariety
PsMYV of ZGMYV whose equational basis relative to ZGMYV is given
just by the equation E1.

o It easily follows from our preceding remarks that the variety of Boolean
algebras is term equivalent to the subvariety B.A of ZG MYV whose equa-
tional basis relative to ZGMYV is given by the equations E1 and E2.

Finally, given an FL A = (4, V, A, -, \,/,1,0), an element a € A is said to
be dualizing if 0/ (a\0) = a = (0/a) \0, and A itself is said to be involutive
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if every member of A is dualizing. We denote by InFL the variety of
all involutive FLs. PsMYV, and consequently also MYV and BA, are all
subvarieties of ZnF L.

We remark, for future reference, that RL is both congruence permutable
(witness the term [zV (z/y)x]AlxV (z/y)z]) and 1-regular (witness the terms
\yA1,y\zA1l). Since Mal’cev properties carry over to expansions, F L has
these properties as well. Any variety which is congruence permutable and 1-
regular is, in particular, ideal determined: the lattice of congruence relations
and the lattice of ideals (in the sense of [16]) of any algebra in the variety
are isomorphic. It is proved in [3] (see also [10]) that for any RL or FL A,
ideals of A coincide with convex normal subalgebras of A.

4. Joins and products of residuated lattice varieties

Recall the following definitions from universal algebra:

DEFINITION 8. ([14]) Two varieties ¢ and V, of the same similarity type v,
are said to be independent if there exists a binary term * such that

UFzxy=z, VErxy=y.

Also, U and V are said to be disjoint if their intersection is the trivial
variety of type v.

Independent varieties are always disjoint, but the converse is not neces-
sarily true (for a counterexample, see e.g. [23]). In [14] it is shown that if U
and V are independent varieties, then they are disjoint and their join U V V
in the lattice of all varieties of type v coincides with their direct product, i.e.
with the class

UxV={AxB:AclBeV}.

Once again the converse need not be true, but it is proved in [19] that if
U and V are disjoint subvarieties of a congruence permutable variety?, then
they are independent and U VYV =U x V.

This result is relevant for our problem in that the varieties RL and FL
are, as recalled above, congruence permutable. Moreover, ZRL and LG

2 Actually, for a pointed variety V the assumption of congruence permutability is un-
necessarily strong: 1-permutability, i.e. the property that for every A €V and every
0,9 € Con(A) 1/0 o) = 1/¢ o 6, together with the presence of a unital groupoid term
reduct, suffices [21].



1092 F. Paoli and C. Tsinakis

are clearly disjoint subvarieties of RL; they are also independent, witness
the term

zry =z (@x\1) (1\D\1).

The same relation holds true for FL; and LG as subvarieties of FL,
and all the more so if we replace FL; by any of its proper subvarieties.
In particular, BA and LG are disjoint and independent subvarieties of the
congruence permutable variety F L, whence we are entitled to assume that
BAV LG =BA x LG. The problem of axiomatizing their join, therefore,
reduces to the more accessible problem of axiomatizing their direct product.

The independence of ZRL (FL;) and LG implies that the integral ele-
ments of an RL (FL) are precisely those elements of the form a (a\1), and
that the invertible elements are precisely those elements of the form (a\1) \1.
In what follows, if ¢ is an RL or FL term, we abbreviate by ¢ the term ¢ (£\1).

In [19], Jonsson and one of the present authors provide necessary and
sufficient conditions for an RL to be represented as the direct product of an
integral RL and an ¢-group. The following theorem, in fact, is proved:

THEOREM 9. For an RL A, the following conditions are equivalent:

(1) There exist an integral RL B and an ¢-group C such that A = B x C;
(2) A satisfies

E6 (2\1Vy)((@\1Vy)\1)~1

PROOF. (sketch).
(1) clearly implies (2), for (z\1V y) ((z\1V y)\1)B*C (b1, c1), (b2, c2))
simplifies to

(Lerh) V(b2 e2)) (Lier )\ (1, 1) A (b2, e2) \ (1,1)) =
((1,01_1) \% (bz,Cg)) ((1,01) A (1,02_1))
(1,(:1_1 \/02) (1,01 A 02_1) = (1,1).

As to the converse implication, let A satisfy E6, and let B and C be,
respectively, the set of all integral elements and the set of all invertible
elements of A. B and C are subuniverses of A, and the corresponding
subalgebras B and C are, respectively, an integral RL and an ¢-group. Now,
for any a € A let

fla) = (a(a\1), (a\1)\1).

f provides the required isomorphism between A and B x C :
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e it is well-defined, for all elements of the form a (a\1) are integral and
all elements of the form (a\1)\1 are invertible;

e it is onto, for all integral elements have the form a (a\1) and all in-
vertible elements have the form (a\1) \1;

e it is one-one, for it can be proved that if an RL A satisfies E6, then
for any a € A

a=a(a\l) ((@\1)\1);

e it preserves all the residuated lattice operations, by properties of RLs.
|

In particular, when B in the preceding theorem is a GMV-algebra, we
obtain the following proposition, first proved using different methods in [11]:

THEOREM 10. An RL A is a GMV-algebra iff there exist an integral GMV-
algebra B and an ¢-group C such that A = B x C.

5. An equational basis for BAV LG

Theorem 10 almost caters for all our needs, since it gives necessary and
sufficient conditions for an RL to be representable as a direct product of an
integral GMV-algebra and an ¢-group. As we have seen, however, if we want
to conveniently express Boolean algebras the type of residuated lattices is
not enough: we need the additional constant 0 which realizes the bottom
element in any Boolean algebra and the identity 1 in any ¢-group. The
appropriate setting for our common generalization, therefore, is the variety
FL of FL-algebras. Should Theorem 10 carry over to FL-algebras - that is,
should it be true that an FL A is the product of an integral GMV-algebra (or
a pseudo-MV algebra) and of an ¢-group if and only if it is a GMV-algebra,
possibly satisfying additional conditions about the newly added constant -
then we would be done because, as we have seen, an equational basis for BA
relative to GMYV is known. It would suffice, then, to add axioms expressing
the condition that the integral elements in A satisfy the equations in such
a basis. Our first goal, then, is generalizing Theorem 10 to the new setting.
We will do this for the more general case of Theorem 9.

Given an FL A, we denote hereafter by A* its RL (i.e. its O-free) reduct.
Consider the following equations:

E7 02~0
E8 0\z ~ 1
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It is possible to show that:
LEMMA 11. If an FL A satisfies E6 and ES8, then it also satisfies E7.

ProOOF. By Theorem 9, if A satisfies E6 there exist B* € ZRL and C € LG
such that A* ~ B* x C; more precisely, B* is the subalgebra of integral
elements of A*, and C is the subalgebra of invertible elements of A*. By
our observation on the form of integral elements in FL algebras, it follows
from E8 that 0 is less or equal than any element of B*; if we can show that
0 is itself integral, we are done, since the bottom element of any residuated
lattice (and thus, in particular, of B*) is necessarily idempotent. However,
assigning the value 1 to the variable  in E8, we obtain that 0\1 = 1, whence
0=0-1=0(0\1) has the required form, proving our claim. |

LEMMA 12. An FL A belongs to FLw X LG if and only if it satisfies E6
and ES.

Proor. E6 and E8 hold in both FLy, and £G, hence in FLy X LG. Con-
versely, let A be an FL that satisfies E6 and E8. In view of Lemma 11, it
also satisfies E7. As already observed, moreover, Theorem 9 implies that
there exist B* € ZTRL and C € LG such that A* ~ B* x C, where B* is
the subalgebra of integral elements of A*, C is the subalgebra of invertible
elements of A*, and the map h (b,¢) = bc is an isomorphism from B* x C
onto A*. Note next that, in light of E8, 04 is the least element of B*. Thus
the linguistic expansion B of B* by the constant 0 is a member of FL.
It follows that the expansion B x C of B* x C by the constant 0, where
0B*C = (0B, 1€), satisfies E8. Lastly, the equalities 2(0,1) = (0).%4(1) = 0,
show that h is an isomorphism between the FLs A and B x C. [

COROLLARY 13. An FL A belongs to PsMV x LG if and only if it is a
GMYV-algebra satisfying ES.

ProoOF. From Theorem 10 and Lemma 12. [ ]

From now on, by “GMV-algebra” we will invariably mean an algebra
of the same type as FL algebras, resolving once and for all the ambiguity
concerning the presence of 0 in the type.

THEOREM 14. An FL A belongs to BA x LG if and only if it is a GMV-
algebra satisfying ES and

E9 ZTy~ITAy
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PROOF.

Left to right: If A ~ B x C belongs to BA x LG, then a fortiori it belongs
to PsMYV x LG, whence by Corollary 13 it is a GMV-algebra satisfying ES8.
Now, recall that BA is axiomatized relative to PsMV by E2. If the RL
subalgebra B of integral elements of A is Boolean, then it satisfies such an
equation, that is to say A satisfies E9.

Right to left: 1If A is a GMV-algebra satisfying E8, by Corollary 13 the
integral elements of A are the universe of an algebra B € PsMYV, while the
invertible elements of A are the universe of an algebra C € LG, and A ~
B x C. However, since A satisfies E9, B € BA, whence our conclusion. m

Let V be the variety of GMV algebras whose equational basis relative to
GMYV is given by E8 and

E10 z(z\1Ay\D)y= zAy.

Eventually, we want to show that V coincides with BA x LG - and thus
with BAV LG, in virtue of our remarks in Section 4. However, we start by
establishing a few arithmetical properties of V that may be of independent
interest.

LEMMA 15. V satisfies the following equations and quasiequations:

() (\1Vy) ((\1Vy)\D) =1 (iii) z (2\1) = ~ ;
(i) (2x\1) ((z\1)\1) =~ 1; (iv) 0 <z =x <z

PROOF.

(i) This equation holds in all GMV-algebras, as proved in [19].
(ii) Replace y by z\1 in (i).
(iii) Replace y by z in E10.
(iv) Suppose 0 < a. By the proof of Lemma 11 and Proposition 6, a\1 <
0\1 = 1. Then by (iii) and Proposition 6,

a=a(a\l)a < ala = d® |

We are now ready to prove our main theorem:

THEOREM 16. V = BA x LG = BAV LG. In other words, BAV LG is ax-
iomatized relative to FL by

Ef z/((xVy\r)~zVy~(z/(zVy))\;
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E8 0\ (xz(z\1)) =~ 1; and
E10 z(z\1Ay\l)y= zAy.
PROOF. The equation E10 holds in both BA and LG, hence in BA x LG.
Conversely, it suffices to show that E9 holdsin V. Let A €V and let a,b € A.
Then: B o
anb =a (5\1 A b\l) b (E10)
=a(1A1)b (Proposition 6)

=ab (res. lattice axioms)

ProposITION 17.
(1) MV x LG = MV V LG is aziomatized relative to FL by the equations
Ef z/((zVy)\z)maVy=(z/(zVy))\z;
E8 0\(z(z\1)) =1; and
Ei11 z(z\1Ay\D)y=y(z\1 Ay\l)z.
(2) PsMV x LG = PsMVV LG is axiomatized relative to FL by the equa-
tions
B4 o/ ((@Vy)\a) ~aVy~(a/(@Vy)\e; and
E8 0\ (z(z\1)) ~ 1.
PrROOF. Given A ~ B x C in MV V LG, E11 guarantees that the set of
integral elements in the decomposition provided by Lemma 12 satisfies zy =
yx. However, we already observed that such an equation axiomatizes MYV
relative to ZGMYV. Without that condition, we only know that the set of

integral elements is the universe of a lower bounded integral GMV algebra
with bottom element 0 - i.e. a pseudo-MV algebra (cp. Corollary 13). [

PROPOSITION 18. The azioms of BAV LG are independent (relative to FL).

PRroOF. Each of the next three examples of FLs satisfies all the axioms of
BAV LG except for the indicated one.

(E4) Consider any direct product of a Heyting algebra and an ¢-group.

(E8) Let A be the 4-element Boolean algebra, and let 04 be one of the
atoms of the algebra.

(E10) It suffices to consider the 3-element MV-chain. |
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6. Common metatheoretical properties

In this section we strengthen our case in favour of BAV LG as a suitable
common abstraction of Boolean algebras and ¢-groups by showing that it
shares with BA and £G a number of the nice universal algebraic properties
characterizing them. In particular:

(1) BAV LG is a congruence regular, 1-ideal determined and arithmetical
variety.

(2) Members of this variety have representations in terms of residuated
endomorphisms of chains — a property which fails to hold for generic
FLs. This result generalizes both Holland’s well-known representation
theorem for f-groups in terms of algebras of order-preserving auto-
morphisms of chains (see e.g. [7]), the analogous representation of
Boolean algebras as subdirect products of two-element chains, and the
representation of commutative f-monoids (definition is given below)
in [24].

As to the first item in our list above, there is not much to say. It is
well-known that FL is in itself both ideal determined and arithmetical (i.e.
congruence permutable and congruence distributive), and such properties
automatically transfer to subvarieties. That BA V LG is congruence reqular -
meaning that, given an arbitrary A € BAV LG, no two different congruences
of A share a coset - is just slightly less obvious. It is known, in fact, that
congruence regularity is a Mal’cev property [13]: a variety V is congruence
regular iff there are ternary terms ¢y, ...,t, such that every algebra in the
variety satisfies the quasiequations

xRy <=t (rv,y,2) = 2& ... &ty (z,y,2) = 2.

However, although BA and LG are both congruence regular, FL is not.
In addition, congruence regularity is witnessed in BA and £G by terms that
look very much different from each other: z (y\1) z for f-groups, (z A y\0) vV
(y Axz\0) V z for Boolean algebras. Nonetheless, a result in [14] implies that
every Mal’cev property transfers to joins of independent varieties, provided
only that both joinands have it.
As to the second item, recall that an £-monoid is an algebra L =(L, A, V, -, 1)
of type (2,2,2,0) such that

e (L,A,V) is a lattice;

e (L,-,1)is a monoid; and
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e forall a,b,c,d € L,

a(bVve)d = abdV acd
a(bhe)d = abdAacd

Homomorphisms of £-monoids are referred to as ¢-homomorphisms, and
we feel free once again to use plain juxtaposition in place of - in what follows.

We introduce a relation between elements of an /-monoid which will turn
out to be extremely useful throughout this section. If L is an /-monoid and
() # H C L, we define:

H/a = {ce€L:cac H}
a~gb < H/a=H/b
& VeeL(cae He cbe H)

It is clear that ~; is an equivalence relation.
Now, given any chain €, the set End(€2) of all order-endomorphisms of
Q (i.e., of all order-preserving maps on ) is (the universe of) a monoid
with respect to function composition, and a lattice with respect to pointwise
join and meet; moreover, we have for all such endomorphisms f, g, h, k:

flgvh)k = fgkV fhk
fgARk = fgkA fhk

It follows that End (€2) is the universe of an /-monoid whose lattice reduct
is distributive. By abuse of notation, we denote such an ¢-monoid by the
same label End (). Also Aut (€2), the set of all automorphisms of €, is
the universe of an f-monoid which is actually an ¢-group. Holland’s The-
orem [17], which we generalize in Theorem 25 below, states that also the
converse is true — that is, any ¢-group can be embedded into Aut ( ©2) for
some chain €.

The first two lemmas below, whose proofs are presented below for the
reader’s convenience, are due to Anderson and Edwards [1]. The key idea of
Lemma 19 is due to Merlier [24].

LEMMA 19. For an ¢-monoid L, the following statements are equivalent:

(1) There exists a non-trivial £-homomorphism ¢ : L — End(Q2), for some
chain €.

(2) L has a (proper) prime lattice ideal.
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PrOOF. (1) = (2). Let ¢ : L —&nd () be a nontrivial {-homomorphism.
Then there exist elements a,b € L such that ¢ (a) # ¢ (b). Since ¢ preserves
lattice operations, we may assume that a < b and ¢ (a) < ¢ (b). Hence,
there exists w € € such that ¢ (a) (w) < ¢ (b) (w). Fix such an w, and let

Hy={ceL:¢(c)(w) <¢(a)(w)}.

H,, is both nonempty, as a € H,, and proper, as b ¢ H,. It is also easy to
check that it is a prime lattice ideal of L.

(2) = (1). Let H be a prime ideal of L. We first show that {H/a :a € L}
is a chain under set inclusion. Indeed, suppose that H/a & H/b. Then there
exists ¢ € L such that ca € H and ¢b ¢ H. Now c(a Ab) < ca € H, whence
c(andb) € H. Also, for all d € H/b, db € H, whence d(aAb) € H. It
follows that

(cvd)an(cVvd)b=(cVd)(anb)=c(anb)Vd(and) e H.

Note that (¢Vd)b ¢ H, since ¢cb < (¢Vd)b and ¢b ¢ H. However,
H is a prime ideal and thus we must have that (¢cV d)a € H, whence a
fortiori da € H, i.e. d € H/a. We have shown that H/b C H/a, that is,
{H/a:a € L} is a chain under set inclusion.

Next, we prove that ~is a lattice congruence compatible with left mul-
tiplication. We will confine ourselves to showing that for all a,b,¢,d € L: (i)
if a ~g b, then ca ~pg ¢b; (ii) if a ~g o’ and b ~g V', then a Ab ~g o’ AN V.
As to (i), a ~p b means by definition that H/a = H /b, whence

H/ca= (H/a)/c= (H/b) /c = H/cb,

i.e. ca ~p cb. As to (ii), suppose that a ~g o’ and b ~g V', and let ¢ € L.
Since H is a prime ideal, ca A cb = c(aAb) € H iff ca € H or ¢cb € H. By
hypothesis, this happens iff ca’ € H or ¢b' € H, i.e. iff ¢c(a' AV) = ca’ A cb
€ H. ThusaAb~ga AV.

Now, let Qg denote the quotient L*/ ~p, where L* is the lattice reduct
of L. To verify that €2y is a chain, observe that

a/ ~g<b/ ~g iffavd/ ~g=0b/ ~ug
iff Hlavb=H/b
iff Ve(c(avb) e H< cbe H)
iff Ve (caVebe H < cbe H)
iff Ve (cbe H = ca € H)
iff H/bC Ha.
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Thus Qp is a chain, since {H/a : a € L} is such.
Lastly, define ¢ : L — End ( Q) by

p(a)(b) ~u) =ab/ ~p .
Note that for a given a € L, ¢ (a) is an order-endomorphism of Qg if
b/ ~g< ¢/ ~pg, then H/c C H/b and so, for all d € L, dab € H whenever
dac € H, ie., Hlac C H/ab and ab/ ~g< ac/ ~pg. Lastly, it is easy to
verify that ¢ is an /-homomorphism of L into End (g ). |

We can now strengthen the result of Lemma 19 as follows:

LEMMA 20. For an £-monoid L, the following statements are equivalent:

(1) L is distributive.
(2) There exists a chain Q@ such that L can be embedded into End ().

PrOOF. We only prove (1) — (2), since the other implication is immediate.
Suppose that L is distributive. We first show that there exists a family
of chains {€;},.; such that L can be embedded into [] (énd(€2;)). Let
el
{H;};c; be the collection of all prime ideals of L and let Qp, (henceforth
abbreviated as ;) be constructed from H; as in the preceding lemma. Also,
let p; : L — End(R;) be the corresponding homomorphism introduced in
the proof of the same lemma. Note that p; (a) = ¢; (b) implies that for all
¢, ac/ ~p,= bc/ ~p,, whence a/ ~pg,= b/ ~pg, and so a ~p, b. Therefore,
in order to show that L can be embedded into [] (End (€2;)), it will suffice
iel

to prove that () {~g,} = AL, the identity congruence of L. To this end,
let a # b in L.Ze{’he prime ideal separation theorem for distributive lattices
guarantees that there exists a prime ideal H; such that (without loss of
generality) a € H;,b ¢ H;. This, however, means that a ~p, b, showing that
N A{~w} = AL
el

Let now {€;};.; be a family of chains such that L can be embedded

into [] (énd (£2;)). Let < be a total order on I and let 2 = (J {€;}. We
iel el

may assume that the chains €2; are pairwise disjoint. Provide £ with the

following lexicographical order <: for a,b € Q,

<y 1 =<J,a€ 8 and b € Qj; or
o < biff { i=jand a <% b.
Finally, define ® : [] (énd (2;)) — End(R2) by ®(f)(a) = f(i)(a), for
el
all a € Q; and i € I. A routine check shows that ® is an f~-embedding. =
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Any FL algebra A in BAV LG has an f-monoid reduct, for multiplica-
tion distributes from both sides over both meet and join. Such a reduct
is distributive, whence Lemma 20 applies and we have a representation in
terms of order-endomorphisms of a chain ). We show below that a careful
choice of €2 leads to a representation that involves only the residuated maps
on it.

Let P and Q be posets. Recall that a map f : P — Q is residuated if
there exists a map f * : Q — P such that for any a € P and any b € Q,
f(a) <Qbiff a <P £*(b). In this case, we say that f and f* form a residuated
pair, and that f* is a residual of f. Note that a binary map is residuated in
the sense of Section 3 if and only if all translates of the map are residuated
in the preceding sense. We take a note without a proof of the following
well-known result:

LEMMA 21. If P and Q are complete lattices, then f : P — Q is residuated
iff f preserves arbitrary joins.

Given a chain €, we ambiguously denote by Res( Q) both the set of
all residuated maps on € and the /-monoid which has the same set as a
universe. We have the following:

LEMMA 22. If  is a chain, Res () is an (-submonoid of End (Q): In
particular, for any f,g € Res(2): (i) (f9)" = g*f*: (i) (fV g9)" = f*Ng";
(iii) (f Ng)" = f*Vg".

ProOOF. We verify (iii) as a means of an example. We have that

a<(f*vygr) () iffa< f*(b) ora<g”(b)
iff f(a)<borg(a)<b
iff f(a)Ag(a) <D
it (fAg)(a) <0,

where the first equivalence holds true because €2 is a chain. [

A subset I of a poset P is said to be a lower set of P if whenever y € P,
x €I, and y < z, then y € I. Note that the empty set () is a lower set. A
principal lower set is a lower set of the form | a = {z € P | z < a}. More
generally, for AC P, | A={x € P |z <a, for some a € A} denotes the
smallest lower set containing A. The set £(P) of lower sets of P ordered by
set inclusion is a complete lattice; the join is the set-union, and the meet
is the set-intersection. We remark that the map a — | a (a € P) is an
isomorphism between P and the subposet P = {| a | a € P} of L(P).
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LEMMA 23. Every order-preserving map f on a poset P induces a residuated
map f on L(P). Moreover, the correspondence f +— f is bijective.

PROOF. In view of the discussion in the preceding paragraph, we may as-
sume that f is an order preserving map on P. Given I € L(P) and a
representation I = (J,c4 | @, (A € P) of I as a union of principal lower

sets, we define f(I) = Uuea f(l a). We first observe that f(I) is well-
defined, that is, it does not depend on the representation of I. Indeed
suppose that I = (J,cq | @ = Upep | b, for A, B C P. We need to verify
that J,ca f(l @) = Upep f(1 D). Let a € A. We have | a C Jycp | b, and
consequently there exists by € B such that | a C| bg. Since f is an order-
preserving map on P, we have the inclusions f(] a) C f(] by) Uper f(L D).
Thus, Jzea f(I @) € Upep f(1 1), and the reverse inclusion follows by sym-
metry. That f is a residuated map follows directly from Lemma 21. It is
also clear that the correspondence f +— fis bijective, since the restriction

of fto Pis f. [
We remark that if € is a chain, then £(€2) is a complete chain.

LEMMA 24. If € is a chain, then the ¢-monoid End () can be embedded
into the {-monoid Res(L( 2)).

PROOF. We leave to the reader the easy task of verifying that the map
f +— f of the preceding result provides the required embedding. [

Combining Lemma 20 and Lemma 24, we obtain the following general-
ization of Holland’s Representation Theorem:

THEOREM 25. For an {-monoid L, the following statements are equivalent:

(1) L is distributive.

(2) There exists a chain Q such that L can be embedded as an {-monoid

into Res(€2).
In particular we have:

COROLLARY 26. An RL A can be embedded as an £-monoid into Res (€2),
for some chain Q, iff it satisfies the equations

E12 zA(yVz)=(zAy) V(zAw); and
E18 z(yA2)w = zyw A xzw.
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COROLLARY 27. If A eBAV LG, then there exists a chain € such that A
can be embedded as an (-monoid into Res(§2).

We remark that if €2 is a complete chain, in fact any complete lattice, then
Res() is a complete residuated lattice. However, the /~-monoid embeddings
of the preceding two results do not always preserve the division operations.
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