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ABSTRACT

The Molecular Design and Synthesis Center (MDSC) at Vanderbilt Institute
of Chemical Biology plays a crucial role in supporting organic and
medicinal chemistry needs. Its mission is to provide high-quality chemical
synthesis and compound analysis for biomedical researchers, including
lead development, functional probe design, large-scale synthesis, and
qguality control. The MDSC collaborates with investigators from Vanderbilt,
VUMC, and external institutions, contributing to research, consulting, and
educational activities.

MDSC CAPABILITIES

. Custom synthesis of compounds

J Synthesis and design of small molecular probes

. Medicinal chemistry (improve potency, PK)

J Synthesis of biotinylated/fluorescently labeled molecules
] Large scale synthesis (up to 100g)

J Dye Synthesis

1 Nucleotide/Peptide synthesis Matabolites

Imaging Agents Natural Products

. Compound libraries
D GMP Synthesis Photoaffinity Probes

. DMPK and Formulation study PROTACS g ' Metal Sensors

. HPLC purification
J Analytical support (NMR, MS)
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EQUIPMENT

. A technology-driven approach significantly accelerates compound
synthesis using advanced equipment such as the Biotage microwave
reactor, benchtop large-scale reactor, and large-scale rotary
evaporator

d LC/MS equipment provides detailed reaction and purity monitoring
(Agilent 1260 &1200 system)

. ISCO automated normal/reverse phase column purification systems
vield high purity products and intermediates.

J GILSON HPLC equipment enables reverse phase purification and chiral
separations on a range of scales, from milligrams to grams.

d Small Molecule NMR (Bruker 400 MHz, MRB4 12t" floor)

. Compound Registration and Storage (Chemcart registration, DeltaSoft)

Chemical Probes

Lead Optimizaton
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CHEMICAL PROBES IN BIOMEDICAL RESEARCH

Me

= Me O
Me RI//\N NH, O /@ o\l 2HCI
NY
2 @
\Q:NIN/\/NHZ'HC" N|)\)L” & NHMe, H \C‘\I\CO .
H ~N y O\)LN/\/ VU0364572 2
BMS-345541 ’-r ) M1 antagonist
IxB kinase inhibitor
0 é’_N
n__OH O
NN O
HOOC™ ™ | S
2 HO O%ii NMe Q—Q
NH; 0 ]n:\ ? “COOH
LSP4-2022 VE-821 L-000734635 PF3450074
mGlu4/7/8 agonist O ATR kinase inhibitor  elastase inhibitor HIV-1 capsid blnder
COOMe

H H ~ o :
ML297 NH Cl y N/z,_kNH
GIRK activator I /' g
SO,NH, 028 A\ g N= Ar CYP51 Inhibitors
LDHA inhibitor Q
O 7 -Ar Cl
N )\
\ 0 DG-041 (j/( s/\n/
@) N EP3 receptor
H ARM1 (VU0943184)

VUAA1

Kif15 (kinesin-12) Inhibitors odorant receptor agonist

Antibiotic resistance inhibitor

CO5H 0O ‘ O
CO,H 2

o, CEm ol
OMe

N. O O O

Mundulone analogs

VU0506534 Ca-regulated myometrial contractility
] : Receptor for Advanced Glycation End
NAPE-PLD activators products (RAGE) inhibitors

HO O
| O Ph
F Me —
O | S Ph
OH g " OCF;
H Cl | | HO
ACO A H PROTACSs

OH
cytochrome BD inhibitors RJW100-PROTACs

p90 Ribsomal $6 Kinases (RSK) inhibitors Antibiotic resistance Liver Receptor Homologue-1 (LRK-1)

PEPTIDES and PROTACs and PET IMAGING AGENTS

MeO
o ® o
Q) bt
>7 /gNH Y | h NH Bu-Ot Ot-Bu
N ' O

NHBoc
S N
N~ ‘g NN ?
Q 5 07 N N 0 $=0
(eSS | o

dTAG-47
protein degrader [18F]BAY 94-9392 precursor

NH ”
CI Q " NH
T K HH CI 0 | T\N HzN‘g)k
\)J\ ﬁ \)LOH | COOH
E N

MeO

IDOR-4 OMe
CFTR corrector

H,N
F18-Crizotinib (2S,4R)-['®F14-FGIn

NH2 MET/RON inhibitor tumor imaging agent
FLAG peptide

ACS Chemical Biology 2021, 16, 787-793

VANDERBILT INSTITUTE
of CHEMICAL BIOLOGY

FLUORESCENT AND AFFINITY PROBES

5 NHH & N
/\/\/\/

H, SO,
H)N\ N \/\0/\/0\/\ O/ﬁ
®
N

2EN-ABP
cytochrome P450 profiling

O O
X .0
| NA N ‘ near IR-664
)/\)L /\/\/\I_r HO " AO 5 N deep-tissue imaging
ol )

/&

O HO

o 5-ethynyl-2’-deoxyuridine (EdU)
isolation of proteins on nascent DNA (iPOND)

HaloTag PEG-biotin ligand

biotin 11-CTP HO—I?—O—IID—O—I?—O

OH OH OH
mapping of RNA polymerases

OH OH

e O J\/‘\r
‘ ‘ O>~ HOOC. ,NHg+HCl
X o X
\ /
)L N )k
diazirine containing lysine (DizPK) HO™ oH Q
OMe photocrosslinking J;CJ)\
(@ BLLILY
NH

thallos-AM: X = H; Y = ohc R F OH
thallos-AM: X =F; Y = OAc furimazine-AM /> N-Bi+
thallos gold: X = H; Y = NMe, luciferase reporter s M=
TI* sensitive dyes —2 BODIPY-FL-Vancomycin

Antimicrobial resistance (Gram-positive bacteria)

RARE NATURAL PRODUCTS AND METABOLITES

O._.0.,__COOH
HO - [ on " =N
v OH O"""'I Q \ />
HO ““NH ~COOH }P———O N N
! :o: |

S*S

H2N

HZN\( \
HOOC HN,,

lic GMP-AMP
HOOC 9-Dechlorochrysophaentin A cycic

STING pathway agonist OH
bacillithiol disulfide antimicrobial activity

Gram positive bacteria
O O

OH OMe OH

O
. COOH
fk)ﬁ e~
T \ HOT ] o~ _CsH(D)11

N2, 3-ethenoguanine OH tetranor-PGE 4
Etheno DNA adducts

iso-Levuglandin (LGE2-pyrrole)

urinary metabolite of PGE; cyclooxygenase activation

SERVICE RATES

DESCRIPTION BASE PRICE EXTERNAL NON- EXTERNAL FOR-

PROFIT PROFIT
NMR $116.31/hour $168.07 $244.47
HPLC $116.31/hour $168.07 $244.47
LCMS $116.31/hour $168.07 $244.47
ISCO $116.31/hour $168.07 $244.47
Synthesis Service $133.55/hour $188.97 $274.87

Visit Molecular Design and Synthesis Center (MDSC) website:
https://medschool.vanderbilt.edu/syncore/
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ABSTRACT

Chrysophaentin A is an antimicrobial natural product isolated
from the marine alga C. taylori in milligram quantity. Structurally,
chrysophaentin A features a macrocyclic biaryl ether core
incorporating two trisubstituted chloroalkenes at its periphery. A
concise synthesis of iso- and 9-dechlorochrysophaentin A enabled
by a Z-selective RCM cyclization followed by an oxygen to carbon
ring contraction is described. Fluorescent microscopy studies
revealed 9-dechlorochrysophaentins inhibited bacterial cell wall
biosynthesis by disassembly of key divisome proteins, the
conerstone cornerstone to bacterial cell wall biosynthesis and
division. In unpublished work, chyrsophaentin A was shown to
circular dichroism (CD) active indicating optical activity
(enantiomerically enriched). In agreement, proton and carbon
NMR spectra of 9-dechlorochrysophaentin A indicate
temperature dependent atropisomer properties, further validated
by preliminary computational studies. Current studies aim to
access single enantiomer chrysophaentins and associate
conformational properties to antimicrobial activity.

BACKGROUND

* Microbial secondary metabolites (natural products) have a rich history in the
discovery and development of antibiotics for the clinical treatment of infections!

 Antimicrobial natural products serve not only as new antibiotic leads, but they
have also identified new antimicrobial targets and provided insight into
fundamental microbiology by study of their mechanism of action. For example,
our understanding of bacterial cell wall biosynthesis has benefited from the
discovery and study of beta-lactam and glycopeptide natural products

* In 2010 Bewley and co-workers? reported on the isolation, structure elucidation,
and antimicrobial activity of chrysophaentins A-H. Chrysophaentins A-D and F-H
are presumably derived from chrysophaentin E by oxidative cyclization of the C

ring phenol at B ring carbons C16 and C14, respectively
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chyrsophaentin E (X =Y = Cl)

* The most prevalent metabolite, chrysophaentin A, displayed antimicrobial
activity against S. aureus, methicillin-resistant S. aureus (MRSA), E. faecium, and
vancomycin-resistant E. faecium (VREF)

* Study of chrysophaentin A was hindered due to unreliable supply from
the producing marine alga (C. taylori) as well as failed attempts to
produce chrysophaentins by in lab culturing of C. taylori >

1. von Nussbaum F, Brands M, Hinzen B, Weigand S, Habich D. Antibacterial natural products in

medicinal chemistry - Exodus or revival? Angewandte Chemie-International Edition 2006; 45: 5072-
129

2. Plaza A, Keffer JL, Bifulco G, Lloyd IR, Bewley CA. Chrysophaentins A-H, antibacterial bisdiarylbutene
macrocycles that inhibit the bacterial cell division protein FtsZ. Journal of the American Chemical
Society 2010;132: 9069-77.

3. Davison JR, Bewley CA. Antimicrobial chrysophaentin analogs identified from laboratory cultures of
the marine microalga Chrysophaeum taylorii. Journal of Natural Products 2019; 82: 148-53

CHEMICAL SYNTHESIS OF 9-DECHLOROCHRYSOPHAENTIN A, ISO-9-
DECHLOROCHRYSOPHAENTIN A AND CONGENERS

Our synthetic strategy featured two key steps: i. closure of the

macrocyclic biaryl ether by way of a Z-selective ring-closing
metathesis (RCM) reaction; and ii. Lewis acid mediated O to C
alkyl migration which proved to bifurcate between C5’ and C3’
leading to iso- and 9-dechlorochrysophaentin A, respectively
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Scheme 1 Multi-gram synthesis of AB Biaryl ether
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Antimicrobial activity of chrysophaentins and
comparison to known FtsZ inhbitior PC1907234
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Synthesis of iso- and 9-Dechlorochrysophaentin A and
Congeners VU0848354 and VU0848355 and their Antimicrobial
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4. Fullenkamp, C. R.; Hus, Y-P.; Quardokus, E. M.; Zhao, G.; Bewley, C. A.; VanNieuwenhze, M.; Sulikowski, G. A.
Synthesis of 9-dechlororchrysophaentin A enables studies revealing bacterial cell wall biosynthesis inhibition

phenotype in B. subilis. J. Am. Chem. Soc. 2020, 142, 16161-16166

CHRYSOPHAENTINS INHIBIT CELL WALL BIOSYNTHESIS BY A UNIQUE MOA

Chrysophaentins inhibit bacterial cell wall biosynthesis
by a novel mechanism. Comparison to known FtsZ
inhbitior PC190723 and known cell wall biosynthesis

inhibitor ampicillin (beta-lactam) 4

» FsZ.GTP old PG ; i
3 Ftsz-GDP === MNew FG T
T Flsa Membrane

N L l i i l %

‘ P& Synthases

Cell length, pm

VIJ0848354
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No treatment Ampicillin PC190723

VUD848354 VUOD848355

F F

FtsZ-mNeonG

B —

PC190723 S

mwrmmd etk Cl
MIC =1 mg/mL

Inhibits Ftsf GTPase ICx 585 ng/mlL

PBP2B-mNeonG
_?

O

FDAA intensity, RFU

WUO0B48354 10uM
VUQEA8355 10uM
Ampicillin 10pg/ml (10x MIC)
PC190723 Sugiml (10x MIC)

Chrysophaentins have a unique mode of inhibiting cell wall biosynthesis in B. subfilis. A. Fluorescently
labeled proteins (FtsZ/A) and PBP2B allow visualization of peptidoglycan (PG) synthesis. B. The FtsZ
Inhibitor PC190723 produces the expected cell lengthening phenotype, but not ‘354 or ‘355. C and D.
Ampicillin, ‘354 and 355 inhibit peptidoglycan synthesis, FtsZ inhibitor PC190723 does not. E. Structure of
PC190723, MIC and GTPase-FtsZ inhibition. F. ‘354 and 355 displace FtsZ/A and penicillin binding protein

PBP2B, a novel phenotype.

A. Chrysophaentin A shows a CD spectrum

Cry1 Cry2 Cry3
< Cryd Cryb Cry6
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10 -

Cryl : Chrysophaentin A (single)
Cry2, Cry5-8 : could be Mixture
Cry3 : Chrysophaentin A (major)

5__/u Il

1 B 1 v 1
21D 215 220 225
Wavelength (nm)

B. Hindered rotation around the highlighted bonds impart
atropisomerism and consequently chrysophaentin A
may exist as one of the two enantiomers. Also shown
below is an estimated lowest energy structure of
chrysopophaentin A based NMR data

chrysophaentin A (2°-X = CI; 6’-Y = H): High Barrier to Rotation
iso-chrysophaentin A (2'-X = H; 6'-Y = Cl). Lower Barrier to Rotation

9-dechlorochyrsophaentin A series: 9-Z = H

C. Temperature dependent behavior of 9-
dechlorochrysophaentin (compared to iso-series)
support atropisomer behavior
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FUTURE PLANS/DIRECTIONS

« Resolution of racemic mixture employing Mosher esters
derived from phenol released phenol (following O to C
migration (cf. above, Synthesis of iso- and 9-
dechlorochrysophaentin....)

« Synthesis of C ring analogs (chloro to fluoro and chloro to
methyl, to examine dependence of atropisomer properties
on C ring substitution pattern.
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Background Synthesis of Common Intermediate Synthesis of Precursor:
Spirocyclic Hypervalent lodine(lll) complex
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Synthesis of Thio-cyclic-GMP-AMP and Conjugates as Novel STING Agonists
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ABSTRACT

* There is a significant unmet need for new strategies to
enhance response rates to immune checkpoint blockade
(ICB) through the development and optimization of
Immunostimulatory drugs.

 Cyclic dinucleotide (CDN) agonists of stimulator of
interferon genes (STING) are a promising class of
Immunotherapeutics that activate innate immunity to
Increase tumor immunogenicity.

« The development of uniqgue CDN variants that can be
conjugated to drug carriers via cleavable linkers offers
potential to increase their activity and specificity to widen
their therapeutic window.
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BACKGROUND

* The stimulator of interferon of genes (STING) pathway
plays an important role in immune recognition of cancer.
STING activation triggers a multifaceted innate immune
response that mobilizes endogenous antitumor T cell
immunity.

 STING recognizes several cyclic dinucleotides (CDNSs)
and various CDNs are entering clinical trials.

 CDNs have poor drug like properties and their efficacy
and utility is limited by rapid clearance, low cellular
uptake, and inefficient cytosolic delivery.

« We have previously developed STING-activating
nanoparticles  (STING-NPs) that improve their
pharmacological properties, opening a therapeutic
window for enhancing responses to immunotherapy.

« However, STING-NPs accumulate significantly in the liver
and CDNs leak from the particle during circulation.

 Towards addressing these barriers, we are developing
CDNs with reactive handles and cleavable linkers for

integration into diverse drug carriers.
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STING-activating nanoparticles (STING-NPs). pH-responsive
polymersomes encapsulate and mediate endosomal escape of
CDNs in response to endolysosomal pH.

SYNTHESIS OF CDN STING AGONISTS

Thio-cGAMP Synthesis
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FUNCTIONALIZATION AND CHARACTERIZATION OF STING AGONISTS

Maleimide-Dialanine-Mono-Thio-Mono-Fluoro-DA
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BIOLOGICAL ACTIVITY

Activity of CDN Panel in THP1-Duals
(Human Monocyte STING Reporter Cells)
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SUMMARY AND FUTURE PLANS

* Thio modified CDNs were synthesized and enable
functionalization with maleimide and DBCO reactive handles
through an enzyme cleavable linker.

* Functionalized CDNs display STING-dependent
Immunostimulatory activity in vitro.

« Future studies are focused on ligating CDNs to diverse drug
carrier platforms and evaluating efficacy in tumor models.
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